Questions de cours.

- 1. Énoncer et démontrer la caractérisation séquentielle des limites.
- 2. Énoncer et démontrer le théorème de composition des limites.
- 3. Montrer que toute fonction continue et injective sur un intervalle est strictement monotone.

1 Continuité

Exercice 1.1 (*). Étudier la continuité en 0 des applications suivantes :

1. $|\cdot|$

3.
$$id_{\mathbb{R}} \cdot \mathbb{1}_{\mathbb{Q}}$$
4. $x \longmapsto \begin{cases} \sin\left(\frac{1}{x}\right) & si \ x \neq 0 \\ 0 & si \ x = 0 \end{cases}$
5. $x \longmapsto \begin{cases} x \sin\left(\frac{1}{x}\right) & si \ x \neq 0 \\ 0 & si \ x = 0 \end{cases}$
6. $x \longmapsto \begin{cases} x \left\lfloor \frac{1}{x} \right\rfloor & si \ x \neq 0 \\ 0 & si \ x = 0 \end{cases}$

6.
$$x \mapsto \begin{cases} x \left\lfloor \frac{1}{x} \right\rfloor & si \ x \neq 0 \\ 0 & si \ x = 0 \end{cases}$$

Exercice 1.2 (*). Étudier la continuité de $x \in [0,2] \mapsto |x| + \sqrt{x-|x|}$.

Exercice 1.3 (*). Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue non constante. Montrer que l'ensemble $f(\mathbb{R})$ est infini.

Exercice 1.4 (\star). Des fonctions vérifiant les propriétés suivantes existent-elles?

- **1.** Une fonction $f: \mathbb{R} \to \mathbb{R}$ discontinue en tout point telle que |f| soit continue en tout point.
- **2.** Une fonction $f:[0,1] \to [0,1]$ bijective et discontinue en tout point.
- **3.** Une fonction $f: \mathbb{R} \to \mathbb{R}$ périodique non constante n'admettant pas de plus petite période strictement positive.
- **4.** Une fonction $f: \mathbb{R} \to \mathbb{R}$ périodique non bornée.
- **5.** Une fonction $f: \mathbb{R} \to \mathbb{R}$ bornée sur \mathbb{R} qui n'atteint ses bornes sur aucun segment.
- **6.** Une fonction $f: \mathbb{R} \to \mathbb{R}$ périodique non constante et admettant une limite en $+\infty$.
- **7.** Une fonction $f: \mathbb{R} \to \mathbb{R}$ continue t.q. $f(\mathbb{Q}) \subset \mathbb{R} \setminus \mathbb{Q}$ et $f(\mathbb{R} \setminus \mathbb{Q}) \subset \mathbb{Q}$.
- **8.** Une fonction $f: \mathbb{R} \to \mathbb{R}$ injective et non strictement monotone.

Exercice 1.5 (*). Soit $f: \mathbb{R}_+ \to \mathbb{R}$ continue t.q. $f(x) \xrightarrow[x \to +\infty]{} \ell \in \mathbb{R}$. Montrer que $f(\mathbb{R}_+) \supset [f(0), \ell]$.

Exercice 1.6 (*). Un marcheur parcourt dix kilomètres en deux heures. Montrer qu'il existe un intervalle d'une heure pendant lequel il parcourt exactement cinq kilomètres.

Exercice 1.7 (\star) . Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction continue t.q.

$$\forall x \in \mathbb{R}_+, f(x^2) = f(x).$$

Montrer que f est constante.

Exercice 1.8 (*). Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue et décroissante. Montrer que f possède un unique point fixe.

Exercice 1.9 (*). Soit I un intervalle ouvert de \mathbb{R} contenant un point a. Soit $f, g: I \to \mathbb{R}$ deux fonctions continues en a. Montrer que $\max(f,g)$ est continue en a.

Exercice 1.10 (*). Déterminer l'image de $f: x \in \mathbb{R} \longmapsto x \cos x$.

Exercice 1.11 (*). Soit a < b deux réels. Soit $f: [a,b] \to \mathbb{R}$ une fonction croissante telle que f([a,b]) =[f(a), f(b)]. Montrer que f est continue.

Exercice 1.12 (*). Une fonction vérifiant la propriété des valeurs intermédiaires est-elle nécessairement continue?

Exercice 1.13 (*). Soit $f:[a,b] \to \mathbb{R}$ une fonction continue. Le but est de démontrer que $\sup_{[a,b]} f = \sup_{[a,b]} f$.

- 1. Quelle inégalité est immédiate?
- **2.** En utilisant le fait que la borne supérieure de f sur [a,b] est atteinte en un point x_0 , montrer l'égalité (on pourra distinguer les cas $x_0 \in]a,b[$ et $x_0 \in \{a,b\}$).

Exercice 1.14 (\star) .

- **1.** Montrer qu'il n'existe pas de surjection continue $[0,1] \rightarrow]0,1[$.
- **2.** Construire une sujection continue $]0,1[\rightarrow [0,1].$

Exercice 1.15 (\star) . Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction continue. On pose :

$$g: x \in \mathbb{R}_+ \longmapsto \sup_{t \in [0,x]} f(t).$$

Montrer que g est continue.

Exercice 1.16 (*). *Soit* $f, g : \mathbb{R} \to \mathbb{R}$ *deux fonctions continues.*

- **1.** On suppose que $\forall x \in \mathbb{Q}$, f(x) < g(x).
 - **a.** Montrer que $\forall x \in \mathbb{R}, f(x) \leq g(x)$.
 - **b.** Donner un exemple où $\exists x \in \mathbb{R}, f(x) = g(x).$
- **2.** On suppose que $f_{|\mathbb{Q}}$ est strictement croissante. Montrer que f est strictement croissante.

Exercice 1.17 (\star) . Soit $f:]a,b[\to \mathbb{R}$ une fonction continue t.q. $\lim_a f = \lim_b f$. Montrer que f n'est pas injective.

Exercice 1.18 (ENSI '85, \star). Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue. Montrer que f est affine si et seulement $si \ \forall (x,y) \in \mathbb{R}^2, \ f\left(\frac{x+y}{2}\right) = \frac{f(x)+f(y)}{2}$.

Exercice 1.19 (\star) . Montrer que l'ensemble des points de discontinuité d'une fonction f strictement croissante est au plus dénombrable.

Exercice 1.20 (*). Soit $f, g : [a, b] \to [a, b]$ deux applications continues telles que $f \circ g = g \circ f$. On cherche à prouver l'existence de $c \in [a, b]$ t.q. f(c) = g(c). On note f^n et g^n les n-ièmes itérées respectives de f et g.

- **1.** Montrer que f > g entraîne $\forall n \in \mathbb{N}^*, f^n > g^n$.
- **2.** Montrer que f > g entraîne $\exists K > 0, \forall n \in \mathbb{N}, \forall x \in [a, b], f^n(x) \geqslant Kn + g^n(x)$.
- 3. Conclure.

Exercice 1.21 (*). Soit $f: \mathbb{R} \to \mathbb{R}$ telle que $f(x+1) - f(x) \xrightarrow[x \to +\infty]{} \ell$. Montrer que

$$\frac{f(x)}{x} \xrightarrow[x \to +\infty]{} \ell.$$

Exercice 1.22 (\star) . Soit $f: \mathbb{R} \to \mathbb{R}$. On note A l'ensemble des points x tels que f a un maximum local en x.

- 1. Montrer que f(A) est dénombrable.
- **2.** On suppose f continue et $A = \mathbb{R}$. Que dire de f?

Exercice 1.23 (Mines '02, \star). Soit $f: \mathbb{R} \to \mathbb{R}$ continue. On suppose qu'il existe $a \in \mathbb{R}$ t.g. $f \circ f(a) = a$.

- 1. f admet-elle un point fixe?
- 2. Généraliser.