Intégration et Probabilités

Cours de Adrien Kassel Notes de Alexis Marchand

ENS de Lyon S2 2017-2018 Niveau L3

Table des matières

1	\mathbf{Esp}	aces de probabilité et variables aléatoires	2
	1.1	Rappels de théorie de la mesure – espaces mesurables et espaces mesurés	2
	1.2	Espaces de probabilité	3
	1.3	Rappels de théorie de la mesure – fonctions mesurables	4
	1.4	Variables aléatoires	4
	1.5	Espérance d'une variable aléatoire	6
	1.6	Moments d'une variable aléatoire	6
	1.7	Variance et covariance	7
	1.8	Complément – théorème de Stieltjes	8
	1.9	Fonctions associées à une variable aléatoire	8
2	Inde	épendance	10
	2.1	Événements indépendants	10
	2.2	Sous-tribus indépendantes	11
	2.3	Variables aléatoires indépendantes	11
	2.4	Rappels sur les produits de mesures	12
	2.5	Caractérisation de l'indépendance en termes de lois	12
	2.6	Existence de suites de variables aléatoires réelles indépendantes	13
	2.7	Sommes de variables aléatoires réelles indépendantes	14
	2.8	Loi faible des grands nombres	14
	2.9	Autres caractérisations de l'indépendance	15
	2.10	Lemme de Borel-Cantelli et loi du zéro-un de Kolmogorov	15
3	Con	vergence de variables aléatoires	16
	3.1	Convergence presque-sûre et convergence L^p	16
	3.2	Loi forte des grands nombres	17
	3.3	Convergence en loi	19
	3.4	Convergence des mesures empiriques	20
	3.5	Théorème de Lévy	21
	3.6	Autres caractérisations de la convergence en loi	21
	3.7	Convergence en probabilité	22
4	Tra	nsformée de Fourier	23
	4.1	Définitions et premières propriétés	23
	4.2	Propriétés de régularités	
	4.3	Convolution	24

	4.4	Formule d'inversion	24
	4.5	Transformée de Fourier dans L^2	25
	4.6	Formule sommatoire de Poisson	25
	4.7	Équation de la chaleur	26
5	Pro		26
	5.1	Arbres de Galton-Watson	26
	5.2	Phases sous-critique et critique pour les arbres de Galton-Watson	27
	5.3	Phase sur-critique pour les arbres de Galton-Watson	28
	5.4	Temps d'arrêt et population totale d'un arbre de Galton-Watson	29
6	Mar	rches aléatoires	29
	6.1	Généralités	29
	6.2	Principe de dichotomie	29
	6.3	Marche aléatoire simple	30
	6.4	Exemples de résultats plus généraux en dimension 1	31

1 Espaces de probabilité et variables aléatoires

1.1 Rappels de théorie de la mesure – espaces mesurables et espaces mesurés

Définition 1.1.1 (Espace mesurable). Un espace mesurable (E, \mathcal{E}) est la donnée d'un ensemble E et d'un $\mathcal{E} \subset \mathcal{P}(E)$ t.q.

- (i) $E \in \mathcal{E}$.
- (ii) $\forall A \in \mathcal{E}, E \backslash A \in \mathcal{E}.$
- (iii) $\forall (A_n)_{n \in \mathbb{N}} \in \mathcal{E}^{\mathbb{N}}, \ \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{E}.$

On dit que \mathcal{E} est une σ -algèbre (ou tribu) sur E. Les éléments de \mathcal{E} sont appelés ensembles mesurables.

Définition 1.1.2 (Tribu engendrée). Soit E un ensemble et $C \subset \mathcal{P}(E)$. La tribu :

$$\sigma(C) = \bigcap_{\substack{\mathcal{A} \text{ tribu sur } E \\ C \subset \mathcal{A}}} \mathcal{A}$$

est appelée tribu engendrée par C. C'est la plus petite tribu sur E qui contient C.

Définition 1.1.3 (Tribu borélienne). Soit X un espace topologique et \mathcal{T} la topologie de X. La tribu $\sigma(\mathcal{T})$ est appelée tribu borélienne de X et notée $\mathrm{Bor}(X)$.

Définition 1.1.4 (Classe monotone). *Soit* E *un ensemble. On appelle* classe monotone *sur* E *tout* $\mathcal{M} \subset \mathcal{P}(E)$ t.q.

- (i) $E \in \mathcal{M}$.
- (ii) $\forall (A, B) \in \mathcal{M}^2, A \subset B \Longrightarrow (B \backslash A) \in \mathcal{M}.$
- (iii) $\forall (A_n)_{n\in\mathbb{N}} \in \mathcal{M}^{\mathbb{N}}, (A_n)_{n\in\mathbb{N}} croissante \Longrightarrow \bigcup_{n\in\mathbb{N}} A_n \in \mathcal{M}.$

Remarque 1.1.5. Toute tribu est une classe monotone.

Définition 1.1.6 (Classe monotone engendrée). Soit E un ensemble et $C \subset \mathcal{P}(E)$. La classe monotone :

$$\mathcal{M}(C) = \bigcap_{\substack{\mathfrak{M} \text{ classe monotone sur } E \\ C \subset \mathfrak{M}}} \mathfrak{M}$$

est appelée classe monotone engendrée par C. C'est la plus petite classe monotone sur E qui contient C.

Théorème 1.1.7 (Lemme de classe monotone). Soit E un ensemble et $C \subset \mathcal{P}(E)$. On suppose que C est stable par intersections finies. Alors $\mathcal{M}(C) = \sigma(C)$.

Définition 1.1.8 (Mesure positive). Soit (E, A) un espace mesurable. On appelle mesure positive sur (E, A) toute application $\mu : A \to [0, +\infty]$ vérifiant :

- (i) $\mu(\varnothing) = 0$.
- (ii) Pour toute famille $(A_n)_{n\in\mathbb{N}}$ d'éléments de \mathcal{A} deux à deux disjoints, on a $\mu(\bigsqcup_{n\in\mathbb{N}} A_n) = \sum_{n\in\mathbb{N}} \mu(A_n)$.

On dit alors que (E, \mathcal{A}, μ) est un espace mesuré.

Proposition 1.1.9. Soit (E, A, μ) un espace mesuré.

- (i) $\forall (A, B) \in \mathcal{A}^2$, $A \subset B \Longrightarrow \mu(A) \leqslant \mu(B)$.
- (ii) $\forall (A, B) \in A^2$, $\mu(A) + \mu(B) = \mu(A \cup B) + \mu(A \cap B)$.
- (iii) Soit $(A_n)_{n\in\mathbb{N}}\in\mathcal{A}^{\mathbb{N}}$ une suite croissante pour l'inclusion. Alors :

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\lim_{n\to+\infty}\mu\left(A_n\right).$$

(iv) Soit $(A_n)_{n\in\mathbb{N}}\in\mathcal{A}^{\mathbb{N}}$ une suite décroissante pour l'inclusion. Alors :

$$\mu(A_0) < +\infty \Longrightarrow \mu\left(\bigcap_{n \in \mathbb{N}} A_n\right) = \lim_{n \to +\infty} \mu(A_n).$$

(v) $\forall (A_n)_{n \in \mathbb{N}} \in \mathcal{A}^{\mathbb{N}}, \ \mu(\bigcup_{n \in \mathbb{N}} A_n) \leqslant \sum_{n \in \mathbb{N}} \mu(A_n).$

Proposition 1.1.10. Soit (E, A) un espace mesurable. Soit μ et ν deux mesures sur (E, A). On suppose qu'il existe une classe $C \subset A$ stable par intersections finies t.q. $\sigma(C) = A$ et $\forall A \in C, \mu(A) = \nu(A)$.

- (i) $Si \ \mu(E) = \nu(E) < +\infty$, alors $\mu = \nu$.
- (ii) S'il existe une suite $(E_n)_{n\in\mathbb{N}}\in C^{\mathbb{N}}$ croissante pour l'inclusion t.q. $E=\bigcup_{n\in\mathbb{N}}E_n$ et $\forall n\in\mathbb{N},\ \mu\left(E_n\right)=\nu\left(E_n\right)<+\infty,\ alors\ \mu=\nu.$

Démonstration. Utiliser le lemme de classe monotone (théorème 1.1.7).

Définition 1.1.11. Soit (E, A, μ) un espace mesuré.

- (i) On dit que μ est une mesure de probabilité lorsque $\mu(E) = 1$.
- (ii) On dit que μ est σ -finie lorsqu'il existe une suite $(E_n)_{n\in\mathbb{N}} \in \mathcal{A}^{\mathbb{N}}$ croissante pour l'inclusion $t.q. E = \bigcup_{n\in\mathbb{N}} E_n$ et $\forall n\in\mathbb{N}, \ \mu(E_n) < +\infty$.
- (iii) Un élément $x \in E$ est dit un atome de μ lorsque $\{x\} \in \mathcal{A}$ et $\mu(\{x\}) > 0$.
- (iv) On dit que μ est diffuse lorsque μ n'a pas d'atome.

1.2 Espaces de probabilité

Définition 1.2.1 (Espace de probabilité). Un espace de probabilité est un espace mesuré $(\Omega, \mathcal{A}, \mathbb{P})$, où \mathbb{P} est une mesure de probabilité.

- (i) Ω est l'espace des éventualités, il est appelé l'univers.
- (ii) A est l'ensemble des événements.

Remarque 1.2.2. Dans une situation donnée, l'espace de probabilité n'est pas unique ni canonique. Souvent, il sera omis. Les objets importants sont les variables aléatoires.

Exemple 1.2.3. Il existe une unique mesure de probabilité \mathbb{P} sur $(\{0,1\}^{\mathbb{N}}, \operatorname{Bor}(\{0,1\}^{\mathbb{N}}))$ t.q.

$$\forall \ell \in \mathbb{N}, \ \forall s \in \{0,1\}^{\ell}, \ \mathbb{P}\left(C_s\right) = \frac{1}{2^{\ell}},$$

 $où C_s = \left\{ \omega \in \{0, 1\}^{\mathbb{N}}, \ \forall i \in [0, \ell - 1], \ \omega_i = s_i \right\} \ pour \ \ell \in \mathbb{N} \ et \ s = (s_0, \dots, s_{\ell - 1}) \in \{0, 1\}^{\ell}.$

1.3 Rappels de théorie de la mesure – fonctions mesurables

Définition 1.3.1 (Fonction mesurable). Soit (E, \mathcal{E}) et (F, \mathcal{F}) deux espaces mesurables. Une application $f: E \to F$ est dite mesurable lorsque:

$$\forall A \in \mathcal{F}, \ f^{-1}(A) \in \mathcal{E}.$$

Proposition 1.3.2.

- (i) Une composée de fonctions mesurables est mesurable.
- (ii) Si (E, \mathcal{E}) et (F, \mathcal{F}) sont deux espaces mesurables, $C \subset \mathcal{P}(F)$ est t.q. $\sigma(C) = \mathcal{F}$, alors une application $f: E \to F$ est mesurable dès que $\forall A \in C, f^{-1}(A) \in \mathcal{E}$.
- (iii) Si X et Y sont deux espaces topologiques munis de leurs tribus boréliennes respectives, alors toute application continue $f: X \to Y$ est mesurable.

Proposition 1.3.3. Soit (E, \mathcal{E}) un espace mesurable.

- (i) $Si\ f,g:E\to\mathbb{R}$ sont mesurables, alors (f+g), $\max(f,g)$, $\min(f,g)$, f^+ et f^- sont mesurables.
- (ii) $Si(f_n)_{n\in\mathbb{N}} \in (\mathbb{R}^E)^{\mathbb{N}}$ est une suite de fonctions mesurables, alors $\sup f_n$, $\inf f_n$, $\lim \sup_{n\to+\infty} f_n$ et $\lim \inf_{n\to+\infty} f_n$ sont mesurables.
- (iii) Si $(f_n)_{n\in\mathbb{N}} \in (\mathbb{R}^E)^{\mathbb{N}}$ est une suite de fonctions mesurables convergeant simplement vers $f: E \to \mathbb{R}$, alors f est mesurable.
- (iv) $Si(f_n)_{n\in\mathbb{N}} \in (\mathbb{R}^E)^{\mathbb{N}}$ est une suite de fonctions mesurables, alors $\{x \in E, (f_n(x))_{n\in\mathbb{N}} \text{ converge}\}$ est mesurable.

Définition 1.3.4 (Mesure image). Soit (E, \mathcal{E}) et (F, \mathcal{F}) deux espaces mesurables, $f: E \to F$ une fonction mesurable. Soit μ une mesure positive sur (E, \mathcal{E}) . La mesure image de μ par f, notée $f(\mu)$ ou $f_*\mu$, est définie par :

 $f_*\mu: B \in \mathcal{F} \longmapsto \mu\left(f^{-1}(B)\right) \in [0, +\infty].$

C'est bien une mesure positive.

Définition 1.3.5 (Fonction étagée). Soit (E, \mathcal{E}) un espace mesurable. On appelle fonction étagée sur E toute application $\varphi: E \to \mathbb{R}$ mesurable $t, q, \varphi(E)$ est fini.

Proposition 1.3.6. Soit (E, \mathcal{E}) un espace mesurable.

- (i) Toute fonction mesurable positive $E \to [0, +\infty[$ est limite simple croissante de fonctions étagées positives.
- (ii) Toute fonction mesurable $E \to \mathbb{R}$ est limite simple de fonctions étagées.

1.4 Variables aléatoires

Définition 1.4.1 (Variable aléatoire). Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace de probabilité et (E, \mathcal{E}) un espace mesurable. On appelle variable aléatoire à valeurs dans E toute application mesurable $X : \Omega \to E$.

Définition 1.4.2 (Loi d'une variable aléatoire). Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace de probabilité, (E, \mathcal{E}) un espace mesurable et $X : \Omega \to E$ une variable aléatoire. On appelle loi de X, notée \mathbb{P}_X , la mesure image de \mathbb{P} par X. Autrement dit :

$$\forall B \in \mathcal{E}, \ \mathbb{P}_X(B) = \mathbb{P}\left(X^{-1}(B)\right).$$

C'est une mesure de probabilités sur (E, \mathcal{E}) . Pour $B \in \mathcal{E}$, on notera souvent $\mathbb{P}(X \in B)$ plutôt que $\mathbb{P}_X(B)$.

Remarque 1.4.3. Soit (E, \mathcal{E}, μ) un espace de probabilité. Alors il existe un espace de probabilité $(\Omega, \mathcal{A}, \mathbb{P})$ et une variable aléatoire $X : \Omega \to E$ t.q. $\mathbb{P}_X = \mu$. En effet, il suffit de prendre $(\Omega, \mathcal{A}, \mathbb{P}) = (E, \mathcal{E}, \mu)$ et $X = id_E$. On dit que X est la variable aléatoire canonique de loi μ .

Définition 1.4.4 (Loi discrète, loi à densité). Soit X une variable aléatoire à valeurs dans un espace mesurable (E, \mathcal{E}) .

(i) On dit que X est discrète lorsque E est dénombrable et $\mathcal{E} = \mathcal{P}(E)$. On a alors :

$$\forall A \in \mathcal{P}(E), \ \mathbb{P}(X \in A) = \sum_{a \in A} \mathbb{P}(X = a).$$

(ii) On dit que X est à densité lorsque $(E, \mathcal{E}) = (\mathbb{R}, \operatorname{Bor}(\mathbb{R}))$, et \mathbb{P}_X admet une densité f par rapport à la mesure de Lebesgue λ . On a alors :

$$\forall A \in \text{Bor}(\mathbb{R}), \ \mathbb{P}(X \in A) = \int_A f \ d\lambda.$$

Exemple 1.4.5 (Lois discrètes).

- (i) Loi uniforme $\mathcal{U}(E)$ sur E, avec E fini non vide : $\forall A \in \mathcal{P}(E), \ \mathbb{P}(X \in A) = \frac{|A|}{|E|}$.
- (ii) Loi de Bernoulli $\mathcal{B}(p)$ sur $\{0,1\}$, avec $p \in [0,1]$: $\mathbb{P}(X=1) = p$ et $\mathbb{P}(X=0) = 1 p$.
- (iii) Loi binomiale $\mathcal{B}(n,p)$ sur $\{0,\ldots,n\}$, avec $p \in [0,1]$ et $n \in \mathbb{N}^*$:

$$\forall k \in \{0, \dots, n\}, \ \mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}.$$

(iv) Loi géométrique $\mathcal{G}(p)$ sur \mathbb{N}^* , avec $p \in]0,1[$:

$$\forall k \in \mathbb{N}^*, \ \mathbb{P}(X = k) = (1 - p)^{k - 1} p.$$

(v) Loi de Poisson $\mathcal{P}(\lambda)$ sur \mathbb{N} , avec $\lambda \in \mathbb{R}_+^*$:

$$\forall k \in \mathbb{N}, \ \mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}.$$

Exemple 1.4.6 (Lois à densité).

- (i) Loi uniforme $\mathcal{U}([a,b])$, avec $a < b : \forall x \in \mathbb{R}, f(x) = \frac{1}{b-a} \mathbb{1}_{[a,b]}(x)$.
- (ii) Loi exponentielle $\text{Exp}(\lambda)$, avec $\lambda \in \mathbb{R}_+^*$:

$$\forall x \in \mathbb{R}, \ f(x) = \lambda e^{-\lambda x} \mathbb{1}_{[0,+\infty[}(x).$$

(iii) Loi normale (ou gaussienne) $\mathcal{N}(m, \sigma^2)$, avec $m \in \mathbb{R}$ et $\sigma \in \mathbb{R}_+^*$:

$$\forall x \in \mathbb{R}, \ f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^2\right).$$

(iv) Loi de Cauchy C(c), avec $c \in \mathbb{R}_+^*$:

$$\forall x \in \mathbb{R}, \ f(x) = \frac{c}{\pi (x^2 + c^2)}.$$

1.5 Espérance d'une variable aléatoire

Définition 1.5.1 (Espérance). Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace de probabilité, $X : \Omega \to \mathbb{R}$ une variable aléatoire, avec $d \in \mathbb{N}$. L'espérance de X est définie sous réserve d'existence par :

$$\mathbb{E}(X) = \int_{\Omega} X \ \mathrm{d}\mathbb{P}.$$

 $Si \ X \geqslant 0, \ \mathbb{E}(X)$ est toujours définie dans $[0, +\infty]$. Sinon, $\mathbb{E}(X)$ est définie dès que $\mathbb{E}(|X|) < +\infty$.

Remarque 1.5.2. L'espérance hérite des propriétés de l'intégrale; en particulier, l'espérance est linéaire.

Proposition 1.5.3 (Formule de transfert). Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace de probabilité, (E, \mathcal{E}) un espace mesurable, $X : \Omega \to E$ une variable aléatoire et $f : E \to \mathbb{R}$ une fonction intégrable (par rapport à la mesure \mathbb{P}_X). Alors f(X) est intégrable (par rapport à la mesure \mathbb{P}), et :

$$\mathbb{E}\left(f(X)\right) = \int_{E} f \ \mathrm{d}\mathbb{P}_{X}.$$

Proposition 1.5.4. Soit X une variable aléatoire à valeurs dans un espace mesurable (E, \mathcal{E}) . Alors la loi de X est déterminée par les $\mathbb{E}(f(X))$, où f parcourt l'ensemble des fonctions réelles mesurables bornées.

Démonstration. $\forall A \in \mathcal{E}, \ \mathbb{P}(X \in A) = \mathbb{E}(\mathbb{1}_A(X)).$

Vocabulaire 1.5.5 (Lois marginales). $Si X = (X_1, ..., X_d)$ est une variable aléatoire à valeurs dans \mathbb{R}^d , alors la loi de X_i est appelée i-ième loi marginale de X.

Proposition 1.5.6. Soit $X = (X_1, ..., X_d)$ une variable aléatoire à valeurs dans \mathbb{R}^d . Si X admet une densité par rapport à la mesure de Lebesgue λ_d sur \mathbb{R}^d , alors chaque X_i admet une densité par rapport à la mesure de Lebesgue λ sur \mathbb{R} .

Remarque 1.5.7. Les lois marginales d'une variable aléatoire X sont déterminées par la loi de X, mais la réciproque est fausse.

Exemple 1.5.8. Soit Y une variable aléatoire à densité f sur \mathbb{R} . On définit $g:(x_1,x_2)\in\mathbb{R}^2\longmapsto f(x_1)\,f(x_2)$. On pose X une variable aléatoire sur \mathbb{R}^2 de densité g et X'=(Y,Y). Alors X et X' sont des variables aléatoires sur \mathbb{R}^2 possédant les mêmes lois marginales, mais si $\Delta=\{(x,x),\,x\in\mathbb{R}\}$, alors $\mathbb{P}(X\in\Delta)=0$ et $\mathbb{P}(X'\in\Delta)=1$.

1.6 Moments d'une variable aléatoire

Définition 1.6.1 (Moments). Soit X une variable aléatoire réelle et $p \in \mathbb{N}^*$. On dit que X admet un moment d'ordre p lorsque $\mathbb{E}(|X|^p) < +\infty$, et on appelle alors moment d'ordre p de X la quantité $\mathbb{E}(X^p)$.

Exemple 1.6.2. Soit X une variable aléatoire réelle à densité f. Si X admet un moment d'ordre p, alors selon la formule de transfert :

$$\mathbb{E}(X^p) = \int_{\mathbb{R}} x^p f(x) \, \mathrm{d}x.$$

Notation 1.6.3. Si $(\Omega, \mathcal{A}, \mathbb{P})$ est un espace de probabilité et $p \in [1, +\infty[$, on notera $L^p(\Omega, \mathcal{A}, \mathbb{P})$ (ou simplement L^p) l'espace des variables aléatoires réelles de puissance p-ième intégrable, quotienté par la relation d'égalité presque-partout, et muni de $\|\cdot\|_p$.

Proposition 1.6.4 (Inégalité de Hölder). Soit X et Y deux variables aléatoires réelles, $(p,q) \in]1, +\infty[^2 \ avec \ 1 = \frac{1}{p} + \frac{1}{q}. \ Alors :$

$$\mathbb{E}\left(|XY|\right) \leqslant \mathbb{E}\left(|X|^p\right)^{\frac{1}{p}} \mathbb{E}\left(|Y|^q\right)^{\frac{1}{q}}.$$

Corollaire 1.6.5 (Inégalité de Cauchy-Schwarz). Soit X et Y deux variables aléatoires réelles. Alors :

$$\mathbb{E}\left(\left|XY\right|\right)^{2} \leqslant \mathbb{E}\left(\left|X\right|^{2}\right) \mathbb{E}\left(\left|Y\right|^{2}\right).$$

Proposition 1.6.6. Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace de probabilité. Soit $(p, q) \in [1, +\infty[^2. \ Alors :]]$

$$p \leqslant q \Longrightarrow L^p(\Omega, \mathcal{A}, \mathbb{P}) \supset L^q(\Omega, \mathcal{A}, \mathbb{P})$$
.

Exemple 1.6.7. La loi normale a des moments de tout ordre, mais la loi de Cauchy n'a aucun moment.

Remarque 1.6.8. Les moments permettent d'estimer la "queue de distribution" d'une variable aléatoire X, i.e. la fonction $x \mapsto \mathbb{P}(X \geqslant x)$

Proposition 1.6.9 (Inégalité de Markov). Soit X une variable aléatoire réelle positive. Soit $p \in \mathbb{N}^*$ $t.q.\ X$ admet un moment d'ordre p. Alors :

$$\forall x \in \mathbb{R}, \ \mathbb{P}(X \geqslant x) \leqslant \frac{\mathbb{E}(X^p)}{x^p}.$$

Proposition 1.6.10 (Inégalité de Chernoff). Soit X une variable aléatoire réelle. Alors :

$$\forall \lambda \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ \mathbb{P}(X \geqslant x) \leqslant e^{-\lambda x} \mathbb{E}\left(e^{\lambda X}\right).$$

1.7 Variance et covariance

Définition 1.7.1 (Variance). Soit X une variable aléatoire réelle admettant un moment d'ordre 2. On définit la variance de X par :

$$\operatorname{Var}(X) = \mathbb{E}\left(\left(X - \mathbb{E}(X)\right)^{2}\right).$$

On définit de plus l'écart-type de X par $\sigma_X = \sqrt{\operatorname{Var}(X)}$.

Proposition 1.7.2 (Inégalité de Bienaymé-Tchebychev). Soit X une variable aléatoire réelle admettant un moment d'ordre 2. Alors :

$$\forall a \in \mathbb{R}_+^*, \ \mathbb{P}(|X - \mathbb{E}(X)| \geqslant a) \leqslant \frac{\operatorname{Var}(X)}{a^2}.$$

Définition 1.7.3 (Covariance). Soit X et Y deux variables aléatoires réelles admettant des moments d'ordre 2. On définit la covariance de X et Y par :

$$Cov(X, Y) = \mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))).$$

On définit de plus la corrélation de X et Y par $\operatorname{corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\mathbb{E}(|X|^2)\mathbb{E}(|Y|^2)}}$.

Définition 1.7.4 (Matrice des covariances). Soit $X = (X_1, \ldots, X_d)$ une variable aléatoire à valeurs dans \mathbb{R}^d . On définit la matrice des covariances de X par :

$$K_X = \left(\operatorname{Cov}\left(X_i, X_j\right)\right)_{1 \leqslant i, j \leqslant d} \in \mathbb{M}_d\left(\mathbb{R}\right).$$

Proposition 1.7.5. Soit X une variable aléatoire à valeurs dans \mathbb{R}^d .

- (i) La matrice des covariances K_X est symétrique positive.
- (ii) $Si A \in \mathbb{M}_d(\mathbb{R})$, alors $K_{AX} = AK_X{}^tA$.

1.8 Complément – théorème de Stieltjes

Définition 1.8.1 (Fonction de répartition d'une mesure). Soit μ une mesure sur $(\mathbb{R}, \operatorname{Bor}(\mathbb{R}))$. On définit la fonction de répartition de μ par :

$$F_{\mu}: x \in \mathbb{R} \longmapsto \mu(]-\infty, x]$$
.

Théorème 1.8.2 (Théorème de Stieltjes).

- (i) Soit μ une mesure finie sur $(\mathbb{R}, \operatorname{Bor}(\mathbb{R}))$. Alors F_{μ} est croissante, bornée, continue à droite, et $\lim_{-\infty} F_{\mu} = 0$.
- (ii) Soit $F: \mathbb{R} \to \mathbb{R}_+$ une fonction croissante, bornée, continue à droite, et t.q. $\lim_{-\infty} F = 0$. Alors il existe une unique mesure finie μ sur $(\mathbb{R}, \operatorname{Bor}(\mathbb{R}))$ t.q. $F_{\mu} = F$. Pour $f: \mathbb{R} \to [0, +\infty]$ mesurable, on appelle alors intégrale de Stieltjes de f par rapport à F l'intégrale $\int_{\mathbb{R}} f d\mu$.

Démonstration. (ii) *Unicité*. Appliquer la proposition 1.1.10. *Existence*. Appliquer le théorème de Carathéodory.

Remarque 1.8.3. On peut étendre la construction donnée par le théorème de Stieltjes au cas d'une mesure μ σ -finie, en posant :

$$F_{\mu}: x \in \mathbb{R} \longmapsto \begin{cases} \mu(]0, x] & si \ x \geqslant 0 \\ -\mu(]x, 0] & si \ x < 0 \end{cases}.$$

Par exemple, la mesure de Lebesgue correspond à la fonction $F: x \in \mathbb{R} \longmapsto x$.

1.9 Fonctions associées à une variable aléatoire

1.9.1 Fonction de répartition

Définition 1.9.1 (Fonction de répartition). Soit X une variable aléatoire réelle. On définit la fonction de répartition de X par:

$$F_X: x \in \mathbb{R} \longmapsto \mathbb{P}(X \leqslant x)$$
.

Proposition 1.9.2. Soit X une variable aléatoire réelle.

- (i) F_X est croissante, bornée, continue à droite, et $\lim_{\infty} F_X = 0$, $\lim_{\infty} F_X = 1$.
- (ii) Pour $x \in \mathbb{R}$, F_X est continue en x ssi $\mathbb{P}(X = x) = 0$.
- (iii) F_X caractérise la loi de X.

Exemple 1.9.3. Si X suit la loi de Cauchy C(c), alors $\forall x \in \mathbb{R}$, $F_X(x) = \frac{1}{2} + \frac{1}{\pi}\arctan\left(\frac{x}{c}\right)$.

Proposition 1.9.4. Soit μ une mesure de probabilité sur $(\mathbb{R}, \operatorname{Bor}(\mathbb{R}))$ et F_{μ} sa fonction de répartition. On pose :

$$G: u \in [0, 1[\longrightarrow \inf \{x \in \mathbb{R}, F_{\mu}(x) \geqslant u \}.$$

Si U est une variable aléatoire de loi $\mathcal{U}([0,1])$, alors G(U) a pour loi μ .

1.9.2 Série génératrice

Définition 1.9.5 (Série génératrice). Soit X une variable aléatoire à valeurs dans \mathbb{N} . On définit la série génératrice de X par :

$$G_X: z \in \overline{D(0,1)} \longmapsto \mathbb{E}\left(z^X\right) = \sum_{n=0}^{\infty} \mathbb{P}\left(X=n\right) z^n.$$

Proposition 1.9.6. Soit X une variable aléatoire à valeurs dans \mathbb{N} .

- (i) G_X est holomorphe sur D(0,1) et continue sur $\overline{D(0,1)}$.
- (ii) G_X caractérise la loi de $X: \forall n \in \mathbb{N}, \ \mathbb{P}(X=n) = \frac{G_X^{(n)}(0)}{n!}$
- (iii) Soit $p \in \mathbb{N}$ t.q. X admet un moment d'ordre p. Alors g_X est p fois dérivable en 1 et :

$$g_X^{(p)}(1) = \mathbb{E}(X(X-1)\cdots(X-p+1)).$$

1.9.3 Fonction caractéristique

Définition 1.9.7 (Fonction caractéristique). Soit X une variable aléatoire à valeurs dans \mathbb{R}^d . On définit la fonction caractéristique de X par :

$$\Phi_X : \xi \in \mathbb{R}^d \longmapsto \mathbb{E}\left(e^{i\langle \xi|X\rangle}\right),$$

 $où \langle \cdot | \cdot \rangle$ est le produit scalaire canonique sur \mathbb{R}^d .

Définition 1.9.8 (Transformée de Fourier d'une mesure). Soit μ une mesure sur $(\mathbb{R}^d, \operatorname{Bor}(\mathbb{R}^d))$. On définit la transformée de Fourier $de \mu par$:

$$\hat{\mu}: \xi \in \mathbb{R}^d \longmapsto \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} e^{-i\langle \xi|\cdot \rangle} d\mu.$$

Lemme 1.9.9. Soit $\sigma \in \mathbb{R}_+^*$. On considère :

$$g_{\sigma}: x \in \mathbb{R} \longmapsto \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x}{\sigma}\right)^2\right).$$

Soit μ_{σ} la mesure sur $(\mathbb{R}, \operatorname{Bor}(\mathbb{R}))$ de densité g_{σ} . Alors :

$$\forall \xi \in \mathbb{R}, \ \hat{\mu}_{\sigma}(\xi) = \frac{1}{\sigma} g_{1/\sigma}(\xi).$$

Théorème 1.9.10. La transformée de Fourier est injective sur l'ensemble des mesures boréliennes sur \mathbb{R}^d .

Démonstration. On se place dans le cas où d = 1. Soit ν une mesure sur $(\mathbb{R}, \text{Bor}(\mathbb{R}))$. Pour $\sigma \in \mathbb{R}_+^*$, on pose :

$$f_{\sigma}: x \in \mathbb{R} \longmapsto (g_{\sigma} * \mu)(x) = \int_{\mathbb{R}} g_{\sigma}(x - \cdot) d\nu,$$

avec les notations du lemme 1.9.9. Et on note ν_{σ} la mesure de densité f_{σ} sur $(\mathbb{R}, \operatorname{Bor}(\mathbb{R}))$. En utilisant le lemme 1.9.9, on montre que $\hat{\nu}$ détermine ν_{σ} pour tout $\sigma \in \mathbb{R}_{+}^{*}$. Comme la famille $(g_{\sigma})_{\sigma \in \mathbb{R}_{+}^{*}}$ est une approximation de la masse de Dirac δ_{0} en 0 (i.e. $\forall \sigma \in \mathbb{R}_{+}^{*}$, $\int_{\mathbb{R}} g_{\sigma} d\lambda = 1$ et $\forall \varepsilon > 0$, $\int_{\mathbb{R} \setminus [-\varepsilon, +\varepsilon]} g_{\sigma} d\lambda \xrightarrow[\sigma \to 0]{} 0$). On en déduit que $\forall \varphi \in \mathcal{C}_{c}^{0}(\mathbb{R})$, $\int \varphi d\nu_{\sigma} \xrightarrow[\sigma \to 0]{} \int \varphi d\nu$. Par densité de $\mathcal{C}_{c}^{0}(\mathbb{R})$ dans $L^{1}(\mathbb{R})$, on en déduit que $\hat{\nu}$ détermine ν .

Corollaire 1.9.11. Si X est une variable aléatoire à valeurs dans \mathbb{R}^d , Φ_X caractérise la loi de X.

Démonstration. C'est une conséquence du théorème 1.9.10 car $\forall \xi \in \mathbb{R}^d$, $\Phi_X(\xi) = (2\pi)^{d/2} \hat{\mathbb{P}}_X(-\xi)$.

Proposition 1.9.12. Soit X une variable aléatoire réelle. Soit $p \in \mathbb{N}$ t.q. X admet un moment d'ordre p. Alors Φ_X est de classe C^p sur \mathbb{R} et :

$$\mathbb{E}(X^p) = (-i)^p \Phi_X^{(p)}(0).$$

1.9.4 Transformée de Laplace

Définition 1.9.13 (Transformée de Laplace). Soit X une variable aléatoire réelle positive. On définit la transformée de Laplace $de\ X$ par :

$$L_X: \lambda \in \mathbb{R} \longmapsto \mathbb{E}\left(e^{-\lambda X}\right).$$

Proposition 1.9.14. Soit X une variable aléatoire réelle positive.

(i) $L_X \operatorname{est} \mathcal{C}^{\infty} \operatorname{sur} [0, +\infty[\operatorname{et} \mathcal{C}^0 \operatorname{en} 0.$

- (ii) L_X caractérise la loi de X.
- (iii) Soit $p \in \mathbb{N}$ t.q. X admet un moment d'ordre p. Alors L_X est p fois dérivable en 0 et :

$$\mathbb{E}(X^p) = (-1)^p L_X^{(p)}(0).$$

Démonstration. (ii) On note $\mathcal{A} = \operatorname{Vect}\left(\left\{\left(x \in [0, +\infty] \longmapsto e^{-\lambda x}\right), \ \lambda \in \mathbb{R}_+\right\}\right)$. Soit X et X' deux variables aléatoires réelles t.q. $L_X = L_{X'}$. On a alors aisément $\forall f \in \mathcal{A}, \ \mathbb{E}\left(f(X)\right) = \mathbb{E}\left(f\left(X'\right)\right)$. Or \mathcal{A} est une algèbre de fonctions continues sur le compact $[0, +\infty]$, et \mathcal{A} sépare les points (i.e. $\forall x \neq y, \exists f \in \mathcal{A}, \ f(x) \neq f(y)$). Selon le théorème de Stone-Weierstraß, \mathcal{A} est dense dans $(\mathcal{C}^0\left([0, +\infty]\right), \|\cdot\|_{\infty})$. Par convergence dominée, on en déduit que $\mathbb{E}\left(f(X)\right) = \mathbb{E}\left(f\left(X'\right)\right)$ pour tout f mesurable bornée. En appliquant cela à des fonctions caractéristiques, on en déduit que $\mathbb{P}_X = \mathbb{P}_{X'}$.

Remarque 1.9.15. On peut étendre le domaine de définition de L_X à $\{z \in \mathbb{C}, \Re(z) \ge 0\}$. On obtient une fonction holomorphe sur $\{z \in \mathbb{C}, \Re(z) > 0\}$. Pour déterminer la loi de X, il suffit donc de connaître L_X sur un sous-ensemble de \mathbb{R}_+^* contenant un point d'accumulation.

Proposition 1.9.16. Soit X une variable aléatoire à valeurs réelles positives. S'il existe $\varepsilon > 0$ t.q. $\mathbb{E}\left(e^{\varepsilon X}\right) < +\infty$, on dit que X admet des moments exponentiels. Dans ce cas, X admet tous ses moments, L_X est holomorphe sur $\{z \in \mathbb{C}, \Re(z) > -\varepsilon\}$ et :

$$\forall \lambda \in]-\varepsilon, +\varepsilon[, L_X(\lambda) = \sum_{k \in \mathbb{N}} \mathbb{E}\left(X^k\right) \frac{(-\lambda)^k}{k!}.$$

Cette série s'appelle la fonction génératrice des moments.

Corollaire 1.9.17. Si une variable aléatoire X à valeurs réelles positives admet des moments exponentiels, alors la suite $\left(\mathbb{E}\left(X^{k}\right)\right)_{k\in\mathbb{N}}$ caractérise la loi de X.

2 Indépendance

2.1 Événements indépendants

Notation 2.1.1. Dans toute la suite, on fixe un espace de probabilité $(\Omega, \mathcal{A}, \mathbb{P})$.

Définition 2.1.2 (Événements indépendants).

(i) On dit que deux événements A et B sont indépendants, et on note $A \perp B$, lorsque :

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$$

(ii) On dit que n événements A_1, \ldots, A_n sont indépendants (dans leur ensemble) lorsque :

$$\forall J \in \mathcal{P}\left(\left\{1,\dots,n\right\}\right), \ \mathbb{P}\left(\bigcap_{j \in J} A_j\right) = \prod_{j \in J} \mathbb{P}\left(A_j\right).$$

(iii) On dit qu'une famille d'événements $(A_j)_{j\in J}$ est indépendante lorsque :

$$\forall J \in \mathcal{P}_{f}(I), \ \mathbb{P}\left(\bigcap_{j \in J} A_{j}\right) = \prod_{j \in J} \mathbb{P}\left(A_{j}\right),$$

 $où \mathcal{P}_{f}(I)$ est l'ensemble des parties finies de I.

Remarque 2.1.3. Si n événements sont indépendants (dans leur ensemble), alors ils sont deux à deux indépendants; mais la réciproque est fausse.

2.2 Sous-tribus indépendantes

Définition 2.2.1 (Sous-tribus indépendantes).

(i) On dit que n sous-tribus $\mathcal{B}_1, \ldots, \mathcal{B}_n$ de \mathcal{A} sont indépendantes lorsque :

$$\forall (A_1, \dots, A_n) \in \mathcal{B}_1 \times \dots \times \mathcal{B}_n, \ \mathbb{P}\left(\bigcap_{i=1}^n A_i\right) = \prod_{i=1}^n \mathbb{P}(A_i),$$

ou de manière équivalente, lorsque $\forall (A_1, \ldots, A_n) \in \mathcal{B}_1 \times \cdots \times \mathcal{B}_n$, les événements A_1, \ldots, A_n sont indépendants.

(ii) On dit qu'une famille $(\mathcal{B}_i)_{i\in I}$ de sous-tribus de \mathcal{A} est indépendante lorsque toute sous-famille finie de $(\mathcal{B}_i)_{i\in I}$ est indépendante.

Remarque 2.2.2. Si A est un événement, notons que $\sigma(\{A\}) = \{\emptyset, A, {}^{\complement}\!A, \Omega\}$. Si $(A_i)_{i \in I}$ est une famille d'événements, alors cette famille est indépendante ssi la famille de tribus $(\sigma(\{A_i\}))_{i \in I}$ est indépendante.

Lemme 2.2.3. Soit $\mathcal{B}_1, \ldots, \mathcal{B}_n$ des sous-tribus de \mathcal{A} . Pour $i \in \{1, \ldots, n\}$, soit $\mathcal{C}_i \subset \mathcal{B}_i$ t.q. $\sigma(\mathcal{C}_i) = \mathcal{B}_i$, $\Omega \in \mathcal{C}_i$ et \mathcal{C}_i est stable par intersections finies. On suppose que :

$$\forall (C_1, \dots, C_n) \in \mathcal{C}_1 \times \dots \times \mathcal{C}_n, \ \mathbb{P}\left(\bigcap_{i=1}^n C_i\right) = \prod_{i=1}^n \mathbb{P}\left(C_i\right).$$

Alors $\mathcal{B}_1, \ldots, \mathcal{B}_n$ sont indépendantes.

Démonstration. On fixe d'abord $(C_2, \ldots, C_n) \in \mathcal{C}_2 \times \cdots \times \mathcal{C}_n$. On définit :

$$\mathfrak{M}_{1} = \left\{ A \in \mathcal{B}_{1}, \, \mathbb{P}\left(A \cap C_{2} \cap \cdots \cap C_{n}\right) = \mathbb{P}(A)\mathbb{P}\left(C_{2}\right) \cdots \mathbb{P}\left(C_{n}\right) \right\}.$$

On montre que \mathfrak{M}_1 est une classe monotone stable par intersections finies et contenant \mathcal{C}_1 . Selon le lemme de classe monotone (théorème 1.1.7), $\mathfrak{M}_1 = \mathcal{B}_1$. Puis on raisonne par récurrence.

Notation 2.2.4. Si $(\mathcal{B}_i)_{i\in I}$ est une famille de sous-tribus de \mathcal{A} , on note :

$$\bigvee_{i\in I} \mathcal{B}_i = \sigma\left(\bigcup_{i\in I} \mathcal{B}_i\right).$$

Lemme 2.2.5 (Lemme de regroupement par paquets). Soit $(\mathcal{B}_i)_{i\in I}$ une famille de sous-tribus indépendantes de \mathcal{A} . Soit $(I_{\lambda})_{\lambda\in\Lambda}$ une partition de I. Alors les sous-tribus $(\bigvee_{i\in I_{\lambda}}\mathcal{B}_i)_{\lambda\in\Lambda}$ sont indépendantes.

2.3 Variables aléatoires indépendantes

Définition 2.3.1 (Tribu engendrée par une variable aléatoire). Soit (E, \mathcal{E}) un espace mesurable et $X: \Omega \to E$ une variable aléatoire. On appelle tribu engendrée par X la tribu :

$$\sigma(X) = \left\{ X^{-1}(B), \ B \in \mathcal{E} \right\}.$$

C'est la plus petite sous-tribu de \mathcal{A} qui rende X mesurable. De même, si $(X_i)_{i\in I}$ est une famille de variables aléatoires, la tribu engendrée par les $(X_i)_{i\in I}$ est la plus petite tribu de \mathcal{A} qui rende tous les $(X_i)_{i\in I}$ mesurables :

$$\sigma\left(X_{i},\ i\in I\right)=\bigvee_{i\in I}\sigma\left(X_{i}\right).$$

Proposition 2.3.2. Soit (E, \mathcal{E}) un espace mesurable. Soit $X : \Omega \to E$ et $Y : \Omega \to \mathbb{R}$ deux variables aléatoires. Alors Y est $\sigma(X)$ -mesurable ssi il existe une fonction $f : E \to \mathbb{R}$ mesurable t, q.

$$Y = f(X)$$
.

Démonstration. (\Leftarrow) Clair. (\Rightarrow) Le montrer d'abord pour Y étagée, puis passer à la limite.

Définition 2.3.3 (Variables aléatoires indépendantes). Soit $((E_i, \mathcal{E}_i))_{i \in I}$ une famille d'espaces mesurables et $(X_i)_{i \in I} \in \prod_{i \in I} E_i^{\Omega}$ une famille de variables aléatoires définies sur $(\Omega, \mathcal{A}, \mathbb{P})$. On dit que les variables aléatoires $(X_i)_{i \in I}$ sont indépendantes, ou de manière équivalente lorsque :

$$\forall J \in \mathcal{P}_{\mathbf{f}}(I), \ \forall \left(A_{j}\right)_{j \in J} \in \prod_{j \in J} \mathcal{E}_{j}, \ \mathbb{P}\left(\bigcap_{j \in J} X_{j}^{-1}\left(A_{j}\right)\right) = \prod_{j \in J} \mathbb{P}\left(X_{j}^{-1}\left(A_{j}\right)\right),$$

où $\mathcal{P}_f(I)$ est l'ensemble des parties finies de I.

Remarque 2.3.4. Soit $(\mathcal{B}_i)_{i\in I}$ une famille de sous-tribus indépendantes de \mathcal{A} et soit $(X_i)_{i\in I}$ une famille de variables aléatoires sur Ω . Si X_i est \mathcal{B}_i -mesurable pour tout $i\in I$, alors les $(X_i)_{i\in I}$ sont indépendantes.

2.4 Rappels sur les produits de mesures

Définition 2.4.1 (Tribu produit). Soit $((E_i, \mathcal{E}_i))_{i \in I}$ une famille d'espaces mesurables. La tribu produit $\bigotimes_{i \in I} \mathcal{E}_i$ est la plus petite tribu sur $\prod_{i \in I} E_i$ t.q. pour tout $i \in I$, la projection $\pi_i : \prod_{j \in I} E_j \longrightarrow E_i$ est mesurable.

Exemple 2.4.2. Si X et Y sont deux espaces métriques séparables, alors :

$$Bor(X \times Y) = Bor(X) \otimes Bor(Y).$$

Proposition 2.4.3. Soit (E, \mathcal{E}, μ) et (F, \mathcal{F}, ν) deux espaces mesurés σ -finis. Alors il existe une unique mesure notée $\mu \otimes \nu$ sur $(E \times F, \mathcal{E} \otimes \mathcal{F})$ t.q.

$$\forall (A, B) \in \mathcal{E} \times \mathcal{F}, \ (\mu \otimes \nu) \ (A \times B) = \mu(A)\nu(B).$$

Remarque 2.4.4. On peut de même définir une mesure produit sur un produit fini d'espaces. Le produit de tribus et le produit de mesures sont alors associatifs.

2.5 Caractérisation de l'indépendance en termes de lois

Proposition 2.5.1. Soit $(X_i)_{1 \leqslant i \leqslant k}$ une famille finie de variables aléatoires sur Ω . Alors les $(X_i)_{1 \leqslant i \leqslant k}$ sont indépendantes ssi

$$\mathbb{P}_{(X_1,\ldots,X_k)} = \mathbb{P}_{X_1} \otimes \cdots \otimes \mathbb{P}_{X_k}.$$

Exemple 2.5.2. Soit U et V deux variables aléatoires indépendantes t.q. $U \sim \operatorname{Exp}(1)$ et $V \sim \mathcal{U}([0,1])$. Alors les variables aléatoires $X = \sqrt{U}\cos(2\pi V)$ et $Y = \sqrt{U}\sin(2\pi V)$ sont indépendantes.

Corollaire 2.5.3. Soit $((E_i, \mathcal{E}_i))_{i \in I}$ une famille d'espaces mesurables, $(X_i)_{i \in I} \in \prod_{i \in I} E_i^{\Omega}$ une famille de variables aléatoires indépendantes et $(f_i)_{i \in I} \in \prod_{i \in I} \mathbb{R}^{E_i}$ une famille de fonctions intégrables $(f_i)_{i \in I}$ est intégrable pour la mesure \mathbb{P}_{X_i} , i.e. $f_i \circ X_i$ est intégrable pour la mesure \mathbb{P}). Alors :

$$\mathbb{E}\left(\prod_{i\in I}f_i\left(X_i\right)\right) = \prod_{i\in I}\mathbb{E}\left(f\left(X_i\right)\right).$$

En particulier, si les $(X_i)_{i\in I}$ sont réelles et d'espérance finie, alors :

$$\mathbb{E}\left(\prod_{i\in X}X_i\right) = \prod_{i\in I}\mathbb{E}\left(X_i\right).$$

Définition 2.5.4 (Variables aléatoires décorrélées). Deux variables aléatoires réelles X et Y admettant des moments d'ordre 2 sont dites décorrélées lorsque Cov(X,Y) = 0.

Corollaire 2.5.5. Deux variables aléatoires indépendantes sont décorrélées.

Exemple 2.5.6. Soit X et E deux variables aléatoires indépendantes $t.q. X \sim \mathcal{N}(0,1)$ et $E \sim \mathcal{U}(\{-1,1\})$. Alors Cov(X,EX) = 0, donc X et EX sont décorrélées. Pourtant, le support de la loi du couple (X,EX) est de mesure de Lebesgue nulle dans \mathbb{R}^2 , donc (X,EX) n'est pas à densité, donc X et EX ne sont pas indépendantes (car X et EX sont toutes deux à densité).

Proposition 2.5.7. Soit X une variable aléatoire réelle.

(i) Soit \mathcal{B} une sous-tribu de \mathcal{A} t.q.

$$\forall B \in \mathcal{B}, \ \mathbb{P}(B) \in \{0, 1\}.$$

Si X est \mathcal{B} -mesurable, alors X est presque-sûrement constante.

(ii) Soit $f : \mathbb{R} \to \mathbb{R}$ mesurable t.q. f(X) et X sont indépendantes. Alors f(X) est presque-sûrement constante.

Démonstration. (i) Soit $F_X: x \mapsto \mathbb{P}(X \leq x)$ la fonction de répartition de x. Alors $F_X(\mathbb{R}) \subset \{0,1\}$. Or F_X est croissante, continue à droite, et $\lim_{-\infty} F_X = 0$, $\lim_{+\infty} F_X = 1$. Donc il existe $x_0 \in \mathbb{R}$ t.q. $F_X = \mathbb{1}_{[x_0, +\infty[}$. Ainsi, $\mathbb{P}(X = x_0) = 1$. (ii) Posons Y = f(X). f étant mesurable, on a $\sigma(Y) \subset \sigma(X)$. Or X et Y sont indépendantes, donc $\sigma(X)$ et $\sigma(Y)$ sont indépendantes. D'où :

$$\forall A \in \sigma(Y), \ \mathbb{P}(A) = \mathbb{P}(A \cap A) = \mathbb{P}(A)^2.$$

Ainsi $\forall A \in \sigma(Y), \mathbb{P}(A) \in \{0,1\}$. D'après le (i), puisque Y est $\sigma(Y)$ -mesurable, Y est presque-sûrement constante.

Proposition 2.5.8. Soit $X = (X_1, ..., X_d)$ une variable aléatoire à valeurs dans \mathbb{R}^d , à densité f_X . On suppose qu'il existe des fonctions $(f_1, ..., f_d) \in (\mathbb{R}_+)^{\mathbb{R}}$ mesurables t.q.

$$\forall (x_1, \dots, x_d) \in \mathbb{R}^d, f_X(x_1, \dots, x_d) = \prod_{i=1}^d f_i(x_i).$$

Alors les $(X_i)_{1 \le i \le d}$ sont indépendantes et pour tout $i \in \{1, ..., d\}$, il existe une constante $c_i > 0$ t.q. X_i est à densité $c_i f_i$.

2.6 Existence de suites de variables aléatoires réelles indépendantes

Lemme 2.6.1. Il existe une suite $(X_n)_{n\in\mathbb{N}}$ de variables aléatoires indépendantes de loi $\mathcal{U}(\{0,1\})$.

Démonstration. Cela revient à prouver l'existence de la mesure d'équiprobabilité sur $\{0,1\}^{\mathbb{N}}$, qui est une conséquence du théorème de Carathéodory.

Théorème 2.6.2. Soit $(\mu_n)_{n\in\mathbb{N}}$ une suite de mesures de probabilité sur $(\mathbb{R}, \operatorname{Bor}(\mathbb{R}))$. Alors il existe une suite de variables aléatoires indépendantes $(Y_n)_{n\in\mathbb{N}}$ t.q. $\forall n\in\mathbb{N}, \mathbb{P}_{Y_n}=\mu_n$.

Démonstration. On se donne d'abord une suite $(X_k)_{k\in\mathbb{N}}$ de variables aléatoires indépendantes de loi $\mathcal{U}(\{0,1\})$. Soit $\varphi:\mathbb{N}^2\to\mathbb{N}$ une bijection. Pour $(m,n)\in\mathbb{N}^2$, on pose :

$$Z_{m,n} = X_{\varphi(m,n)}.$$

Alors les variables aléatoires $(Z_{m,n})_{(m,n)\in\mathbb{N}^2}$ sont indépendantes. On pose ensuite, pour $n\in\mathbb{N}$:

$$U_n = \sum_{m=0}^{\infty} \frac{1}{2^{m+1}} Z_{m,n}.$$

Selon le lemme de regroupement par paquets (lemme 2.2.5), les variables aléatoires $(U_n)_{n\in\mathbb{N}}$ sont indépendantes. De plus, $\forall n\in\mathbb{N},\ U_n\sim\mathcal{U}([0,1])$. Pour $n\in\mathbb{N}$, on définit enfin $F_n:x\in\mathbb{R}\longmapsto\mu_n(]-\infty,x]$ la fonction de répartition de μ_n ; et on pose :

$$G_n: u \in]0,1[\longrightarrow \inf \{x \in \mathbb{R}, F_n(x) \geqslant u \}.$$

Selon la proposition 1.9.4, $Y_n = G_n(U_n)$ a pour loi μ_n ; et les $(Y_n)_{n \in \mathbb{N}}$ sont indépendantes.

Remarque 2.6.3. Si $((E_n, \mathcal{E}_n, \mu_n))_{n \in \mathbb{N}}$ est une suite d'espaces de probabilité, alors il existe une mesure de probabilité μ sur $(\prod_{n \in \mathbb{N}} E_n, \bigotimes_{n \in \mathbb{N}} \mathcal{E}_n)$ t.q.

$$\forall F \in \mathcal{P}_{f}(\mathbb{N}), \ \forall \left(A_{n}\right)_{n \in F} \in \prod_{n \in F} \mathcal{E}_{n}, \ \mu\left(\left(\prod_{n \in F} A_{n}\right) \times \left(\prod_{m \in \mathbb{N} \setminus F} E_{m}\right)\right) = \prod_{n \in F} \mu_{n}\left(A_{n}\right).$$

2.7 Sommes de variables aléatoires réelles indépendantes

Définition 2.7.1 (Convolution de deux mesures). Soit μ et ν deux mesures sur $(\mathbb{R}, \text{Bor}(\mathbb{R}))$. On définit le produit de convolution $\mu * \nu$ par :

$$\mu * \nu = S_* (\mu \otimes \nu),$$

 $où S: (x,y) \in \mathbb{R}^2 \longmapsto x+y \in \mathbb{R}.$ Autrement dit $\forall A \in Bor(\mathbb{R}), (\mu * \nu)(A) = (\mu \otimes \nu)(S^{-1}(A)).$

Proposition 2.7.2. Si X_1, \ldots, X_k sont des variables aléatoires réelles indépendantes, alors la loi de la somme est donnée par :

$$\mathbb{P}_{X_1+\cdots+X_k}=\mathbb{P}_{X_1}*\cdots*\mathbb{P}_{X_k}.$$

Proposition 2.7.3. Si X_1, \ldots, X_k sont des variables aléatoires réelles indépendantes, alors la fonction caractéristique de la somme est donnée par :

$$\Phi_{X_1+\cdots+X_k}=\Phi_{X_1}\cdots\Phi_{X_k}.$$

Proposition 2.7.4. Si X_1, \ldots, X_k sont des variables aléatoires réelles admettant des moments d'ordre 2, alors :

$$\operatorname{Var}\left(\sum_{i=1}^{k} X_{i}\right) = \sum_{i=1}^{k} \operatorname{Var}\left(X_{i}\right) + 2 \sum_{1 \leq i < j \leq k} \operatorname{Cov}\left(X_{i}, X_{j}\right).$$

En particulier, si les $(X_i)_{1 \le i \le k}$ sont deux à deux décorrélées (donc si elles sont indépendantes), alors $\operatorname{Var}\left(\sum_{i=1}^k X_i\right) = \sum_{i=1}^k \operatorname{Var}\left(X_i\right)$.

2.8 Loi faible des grands nombres

Théorème 2.8.1 (Loi faible des grands nombres dans L^2). Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires réelles indépendantes et suivant toutes la loi d'une variable aléatoire X. On suppose que X admet un moment d'ordre 2. Alors :

$$\frac{1}{n} \sum_{k=1}^{n} X_k \xrightarrow[n \to +\infty]{L^2} \mathbb{E}(X).$$

Exemple 2.8.2 (Loi des événements rares). Pour $n \in \mathbb{N}$, soit Y_n une variable aléatoire de loi $\mathcal{B}(n, p_n)$, avec $p_n \in [0, 1]$. On suppose que $np_n \xrightarrow[n \to +\infty]{} \lambda \in \mathbb{R}_+^*$. Alors $(Y_n)_{n \in \mathbb{N}}$ converge en loi vers une variable aléatoire de Poisson de paramètre λ .

2.9 Autres caractérisations de l'indépendance

Proposition 2.9.1. Soit $((E_i, \mathcal{E}_i))_{1 \leq i \leq k}$ une famille d'espaces mesurables et $(X_i)_{1 \leq i \leq k} \in \prod_{1 \leq i \leq k} E_i^{\Omega}$ une famille de variables aléatoires discrètes sur Ω . Alors les $(X_i)_{1 \leq i \leq k}$ sont indépendantes ssi

$$\forall (x_1, \dots, x_k) \in E_1 \times \dots \times E_k, \ \mathbb{P}\left(\bigcap_{i=1}^k (X_i = x_i)\right) = \prod_{i=1}^k \mathbb{P}\left(X_i = x_i\right).$$

Proposition 2.9.2. Soit $(X_i)_{1 \leq i \leq k} \in \prod_{1 \leq i \leq k} E_i^{\Omega}$ une famille de variables aléatoires réelles sur Ω . Pour $i \in \{1, \ldots, n\}$, on note F_{X_i} la fonction de répartition de X_i (c.f. définition 1.9.1). Alors les $(X_i)_{1 \leq i \leq k}$ sont indépendantes ssi

$$\forall (x_1, \dots, x_k) \in \mathbb{R}^k, \ \mathbb{P}\left(\bigcap_{i=1}^k (X_i \leqslant x_i)\right) = \prod_{i=1}^k F_{X_i}(x_i).$$

Proposition 2.9.3. Soit $(X_i)_{1 \leq i \leq k} \in \prod_{1 \leq i \leq k} E_i^{\Omega}$ une famille de variables aléatoires réelles sur Ω . Pour $i \in \{1, \ldots, n\}$, on note Φ_{X_i} la fonction caractéristique de X_i (c.f. définition 1.9.7). Alors les $(X_i)_{1 \leq i \leq k}$ sont indépendantes ssi

$$\Phi_{(X_1,\ldots,X_k)}=\Phi_{X_1}\cdots\Phi_{X_k}.$$

2.10 Lemme de Borel-Cantelli et loi du zéro-un de Kolmogorov

Définition 2.10.1 (lim sup et lim inf). Soit $(A_n)_{n\in\mathbb{N}}\in\mathcal{A}^{\mathbb{N}}$ une suite d'événements. On définit :

$$\lim\sup_{n\to +\infty}A_n=\bigcap_{n\in\mathbb{N}}\bigcup_{k\geqslant n}A_k\in\mathcal{A}\qquad et\qquad \liminf_{n\to +\infty}A_n\in\mathcal{A}=\bigcup_{n\in\mathbb{N}}\bigcap_{k\geqslant n}A_k\in\mathcal{A}.$$

 $\limsup_{n\to+\infty} A_n$ est l'événement "une infinité de A_n sont réalisés" et $\liminf_{n\to+\infty} A_n$ est l'événement "tous les A_n sont réalisés à partir d'un certain rang".

Proposition 2.10.2. Soit $(A_n)_{n\in\mathbb{N}}\in\mathcal{A}^{\mathbb{N}}$. Alors:

- (i) $\lim \inf_{n \to +\infty} A_n \subset \lim \sup_{n \to +\infty} A_n$.
- (ii) ${}^{\complement}(\liminf_{n\to+\infty}A_n)=\limsup_{n\to+\infty}{}^{\complement}A_n$.

Théorème 2.10.3 (Lemme de Borel-Cantelli). Soit $(A_n)_{n\in\mathbb{N}} \in \mathcal{A}^{\mathbb{N}}$.

- (i) $Si \sum_{n \in \mathbb{N}} \mathbb{P}(A_n) < +\infty$, $alors \mathbb{P}\left(\limsup_{n \to +\infty} A_n\right) = 0$.
- (ii) $Si \sum_{n \in \mathbb{N}} \mathbb{P}(A_n) = +\infty$ et les $(A_n)_{n \in \mathbb{N}}$ sont indépendants, alors $\mathbb{P}\left(\limsup_{n \to +\infty} A_n\right) = 1$.

Définition 2.10.4 (Tribu asymptotique). Soit $(\mathcal{B}_n)_{n\in\mathbb{N}}$ une suite de sous-tribus de \mathcal{A} . On pose :

$$\mathcal{A}_{\infty} = \bigcap_{n \in \mathbb{N}} \bigvee_{k \geqslant n} \mathcal{B}_k.$$

 \mathcal{A}_{∞} est la tribu asymptotique des $(\mathcal{B}_n)_{n\in\mathbb{N}}$. Ses événements sont appelés événements asymptotiques.

Remarque 2.10.5. La tribu asymptotique des $(\mathcal{B}_n)_{n\in\mathbb{N}}$ est l'information contenue dans la suite $(\mathcal{B}_n)_{n\in\mathbb{N}}$ qui ne dépend d'aucune sous-famille finie.

Théorème 2.10.6 (Loi du zéro-un de Kolmogorov). Soit $(\mathcal{B}_n)_{n\in\mathbb{N}}$ une suite de sous-tribus de \mathcal{A} . Si les $(\mathcal{B}_n)_{n\in\mathbb{N}}$ sont indépendantes, alors la tribu asymptotique \mathcal{A}_{∞} des $(\mathcal{B}_n)_{n\in\mathbb{N}}$ est triviale, i.e.

$$\forall A \in \mathcal{A}_{\infty}, \ \mathbb{P}(A) \in \{0, 1\}.$$

Démonstration. Soit $n \in \mathbb{N}$. Alors les tribus $\mathcal{B}_0, \ldots, \mathcal{B}_n, \mathcal{A}_{n+1}$ sont indépendantes par regroupement par paquets (c.f. lemme 2.2.5). Comme $\mathcal{A}_{\infty} \subset \mathcal{A}_{n+1}$, les tribus $\mathcal{B}_0, \ldots, \mathcal{B}_n, \mathcal{A}_{\infty}$ sont indépendantes, et ceci est vrai pour tout $n \in \mathbb{N}$. À nouveau par regroupement par paquets, \mathcal{A}_{∞} est indépendante de $\bigvee_{n \in \mathbb{N}} \mathcal{B}_n$. Or $\mathcal{A}_{\infty} \subset \bigvee_{n \in \mathbb{N}} \mathcal{B}_n$, donc \mathcal{A}_{∞} est indépendante de \mathcal{A}_{∞} . Ainsi :

$$\forall A \in \mathcal{A}_{\infty}, \ \mathbb{P}(A) = \mathbb{P}(A \cap A) = \mathbb{P}(A)^2,$$

d'où le résultat. \Box

Corollaire 2.10.7 (Loi du zéro-un de Borel). Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'événements indépendants. Alors $\limsup_{n\to+\infty} A_n$ est un événement asymptotique et on a la dichotomie suivante :

- (i) $Si \sum_{n \in \mathbb{N}} \mathbb{P}(A_n) < +\infty$, $alors \mathbb{P}\left(\limsup_{n \to +\infty} A_n\right) = 0$.
- (ii) $Si \sum_{n \in \mathbb{N}} \mathbb{P}(A_n) = +\infty$, $alors \mathbb{P}(\lim \sup_{n \to +\infty} A_n) = 1$.

Exemple 2.10.8. Quelques applications:

(i) Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires indépendantes de loi $\mathcal{B}\left(\frac{1}{2}\right)$. Pour $n\in\mathbb{N}$, on pose $R_n = \max\{\ell\in\mathbb{N}, X_n = \cdots = X_{n+\ell-1} = 1\}$, puis $M_n = \max\{R_0, \ldots, R_n\}$. Alors:

$$\mathbb{P}\left(\frac{M_n}{\log_2 n} \xrightarrow[n \to +\infty]{} 1\right) = 1.$$

(ii) Il n'existe pas de mesure \mathbb{P} sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ t.q.

$$\forall k \in \mathbb{N}^*, \ \mathbb{P}(k\mathbb{N}) = \frac{1}{k}.$$

- (iii) Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires indépendantes de loi $\mathcal{B}\left(\frac{1}{2}\right)$. Alors pour tout $k \in \mathbb{N}^*$ et pour tout $\varepsilon \in \{0,1\}^k$, le motif $(\varepsilon_1,\ldots,\varepsilon_k)$ apparaît presque-sûrement une infinité de fois dans la suite $(X_n)_{n\in\mathbb{N}}$.
- (iv) Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires indépendantes de même loi. On pose, pour $n\in\mathbb{N}$, $S_n=X_0+\cdots+X_n$. Alors les événements $(\limsup_{n\to+\infty}S_n=+\infty)$ et $(\liminf_{n\to+\infty}S_n=-\infty)$ sont de probabilité 0 ou 1. De plus, si les $(X_n)_{n\in\mathbb{N}}$ sont de loi $\mathcal{U}(\{-1,1\})$, alors :

$$\mathbb{P}\left(\liminf_{n\to+\infty} S_n = -\infty \text{ et } \limsup_{n\to+\infty} S_n = +\infty\right) = 1.$$

On dit que $(S_n)_{n\in\mathbb{N}}$ oscille.

3 Convergence de variables aléatoires

3.1 Convergence presque-sûre et convergence L^p

Notation 3.1.1. Dans toute la suite, on fixe un espace de probabilité $(\Omega, \mathcal{A}, \mathbb{P})$.

Définition 3.1.2 (Convergence presque-sûre et convergence L^p). Soit $(X_n)_{n\in\mathbb{N}}$ et X des variables aléatoires réelles définies sur Ω .

(i) On dit que $X_n \xrightarrow[n \to +\infty]{\text{p.s.}} X$ ($(X_n)_{n \in \mathbb{N}}$ converge presque-sûrement vers X) lorsque:

$$\mathbb{P}\left(X_n \xrightarrow[n \to +\infty]{} X\right) = 1.$$

Cela est équivalent à dire que $X_n \xrightarrow[n \to +\infty]{} X$ simplement presque-partout.

(ii) Pour $p \geqslant 1$, si les $(X_n)_{n \in \mathbb{N}}$ et X sont dans L^p , on dit que $X_n \xrightarrow[n \to +\infty]{L^p} X$ lorsque :

$$\mathbb{E}\left(|X_n - X|^p\right) \xrightarrow[n \to +\infty]{} 0.$$

Proposition 3.1.3. Soit $(X_n)_{n\in\mathbb{N}}$ et X des variables aléatoires réelles définies sur Ω . Soit $p\geqslant 1$.

- (i) Si $X_n \xrightarrow[n \to +\infty]{\text{p.s.}} X$ et si $\exists Y \in L^p$, $\forall n \in \mathbb{N}$, $|X_n| \leqslant Y$, alors $X_n \xrightarrow[n \to +\infty]{L^p} X$.
- (ii) Si $X_n \xrightarrow[n \to +\infty]{L^p} X$, alors il existe une extractrice φ t.q. $X_{\varphi(n)} \xrightarrow[n \to +\infty]{\text{p.s.}} X$.

3.2 Loi forte des grands nombres

Lemme 3.2.1. Soit X une variable aléatoire réelle positive. Alors :

$$\forall p \in \mathbb{R}_{+}^{*}, \ \mathbb{E}\left(X^{p}\right) = \int_{0}^{\infty} pt^{p-1}\mathbb{P}\left(X > t\right) \, \mathrm{d}t.$$

Théorème 3.2.2 (Loi forte des grands nombres). Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires réelles indépendantes et suivant toutes la loi d'une variable aléatoire X. On suppose que X admet un moment d'ordre 1. Alors :

$$\frac{1}{n} \sum_{k=1}^{n} X_k \xrightarrow[n \to +\infty]{\text{p.s.}} \mathbb{E}(X).$$

Démonstration (Première méthode). Quitte à décomposer X en $X = X^+ - X^-$, on peut supposer que $X \ge 0$. Étape 1. Pour $n \in \mathbb{N}^*$, posons :

$$Y_n = X_n \mathbb{1} (X_n \leqslant n).$$

Montrons que presque-sûrement, pour n assez grand, $X_n = Y_n$ (i.e. $\mathbb{P}(\liminf_{n \to +\infty} (X_n = Y_n)) = 1$). Pour cela, notons que :

$$\sum_{n \in \mathbb{N}^*} \mathbb{P}\left(X_n \neq Y_n\right) = \sum_{n \in \mathbb{N}^*} \mathbb{P}\left(X > n\right) \leqslant \int_0^\infty \mathbb{P}\left(X > t\right) \, \mathrm{d}t = \mathbb{E}(X) < +\infty.$$

Selon le lemme de Borel-Cantelli (théorème 2.10.3) :

$$\mathbb{P}\left(\liminf_{n\to+\infty} (X_n = Y_n)\right) = 1 - \mathbb{P}\left(\limsup_{n\to+\infty} (X_n \neq Y_n)\right) = 1.$$

Étape 2. Il suffit maintenant de prouver que $\frac{T_n}{n} \xrightarrow[n \to +\infty]{\text{p.s.}} \mathbb{E}(X)$, avec $T_n = \sum_{k=1}^n Y_k$. Soit $\alpha > 1$. Posons $k(n) = \lfloor \alpha^n \rfloor$. Alors, pour $\varepsilon > 0$:

$$\sum_{n \in \mathbb{N}^*} \mathbb{P}\left(\left|T_{k(n)} - \mathbb{E}\left(T_{k(n)}\right)\right| > \varepsilon k(n)\right) \leqslant \frac{1}{\varepsilon^2} \sum_{n \in \mathbb{N}^*} \frac{1}{k(n)^2} \operatorname{Var}\left(T_{k(n)}\right) \leqslant \frac{1}{\varepsilon^2} \sum_{n \in \mathbb{N}^*} \frac{1}{k(n)^2} \sum_{1 \leqslant m \leqslant k(n)} \operatorname{Var}\left(Y_m\right) \\
= \frac{1}{\varepsilon^2} \sum_{m \in \mathbb{N}^*} \operatorname{Var}\left(Y_m\right) \sum_{\substack{n \in \mathbb{N}^* \\ k(n) \geqslant m}} \frac{1}{k(n)^2} = \frac{1}{\varepsilon^2} \sum_{m \in \mathbb{N}^*} \operatorname{Var}\left(Y_m\right) \sum_{n \in \mathbb{N}^*} \frac{4}{\alpha^{2n}} \\
\leqslant \frac{4}{\varepsilon^2 (1 - \alpha^{-2})} \sum_{m \in \mathbb{N}^*} \frac{\operatorname{Var}\left(Y_m\right)}{m^2} \leqslant \frac{4}{\varepsilon^2 (1 - \alpha^{-2})} \sum_{m \in \mathbb{N}^*} \frac{1}{m^2} \mathbb{E}\left(Y_m^2\right) \\
= \frac{8}{\varepsilon^2 (1 - \alpha^{-2})} \sum_{m \in \mathbb{N}^*} \frac{1}{m^2} \int_0^\infty t \mathbb{1}_{[0,m]}(t) \mathbb{P}\left(X > t\right) dt \\
= \frac{8}{\varepsilon^2 (1 - \alpha^{-2})} \int_0^\infty \left(\sum_{m = \lceil t \rceil} \frac{1}{m^2}\right) t \mathbb{P}\left(X > t\right) dt.$$

En utilisant le fait que $\sum_{m=\lceil t \rceil}^{\infty} \frac{1}{m^2} \sim \frac{1}{t}$, on obtient l'existence d'une constante K t.q.

$$\sum_{n \in \mathbb{N}^*} \mathbb{P}\left(\left|T_{k(n)} - \mathbb{E}\left(T_{k(n)}\right)\right| > \varepsilon k(n)\right) \leqslant K\mathbb{E}(X) < +\infty.$$

Par Borel-Cantelli, on obtient:

$$\forall \varepsilon > 0, \ \mathbb{P}\left(\liminf_{n \to +\infty} \left(\frac{\left| T_{k(n)} - \mathbb{E}\left(T_{k(n)} \right) \right|}{k(n)} \leqslant \varepsilon \right) \right) = 1.$$

On en déduit donc que $\frac{\mathbb{T}_{k(n)} - \mathbb{E}(T_{k(n)})}{k(n)} \xrightarrow[n \to +\infty]{\text{p.s.}} 0$. Or, par convergence dominée, $\mathbb{E}(Y_n) \xrightarrow[n \to +\infty]{\text{p.s.}} \mathbb{E}(X)$, d'où :

$$\frac{T_{k(n)}}{k(n)} \xrightarrow[n \to +\infty]{\text{p.s.}} \mathbb{E}(X).$$

Étape 3. Soit maintenant $n \in \mathbb{N}^*$ et $m \in \mathbb{N}^*$ t.g. $k(m) \leq n \leq k(m+1)$. Alors:

$$\frac{T_{k(m)}}{k(m)} \cdot \frac{k(m)}{k(m+1)} \leqslant \frac{T_n}{n} \leqslant \frac{T_{k(m+1)}}{k(m+1)} \cdot \frac{k(m+1)}{k(m)}.$$

On en déduit :

$$\frac{1}{\alpha}\mathbb{E}(X) \leqslant \liminf_{n \to +\infty} \frac{T_n}{n} \leqslant \limsup_{n \to +\infty} \frac{T_n}{n} \leqslant \alpha \mathbb{E}(X).$$

En faisant tendre $\alpha \to 1$ (en prenant un nombre dénombrable de valeurs), on obtient $\frac{T_n}{n} \xrightarrow[n \to +\infty]{\text{p.s.}}$ \square

Démonstration (Seconde méthode). Pour $n \in \mathbb{N}$, posons $S_n = \sum_{k=1}^n X_k$. Pour $a > \mathbb{E}(X)$, on considère :

$$M = \sup_{n \in \mathbb{N}} (S_n - na) \in [0, +\infty].$$

Si on montre que M est presque-sûrement finie pour tout $a > \mathbb{E}(X)$, on aura $\forall n \in \mathbb{N}, S_n \leqslant M + na$ donc:

$$\forall a > \mathbb{E}(X), \lim \sup_{n \to +\infty} \frac{S_n}{n} \leqslant a.$$

En faisant tendre $a \to \mathbb{E}(X)$ (en prenant un nombre dénombrable de valeurs), $\limsup_{n \to +\infty} \frac{S_n}{n} \leqslant \mathbb{E}(X)$ presque-sûrement, puis en appliquant le même argument à $(-X_n)_{n \in \mathbb{N}^*}$, $\liminf_{n \to +\infty} \frac{S_n}{n} \geqslant \mathbb{E}(X)$ presque-sûrement, d'où le résultat. Reste donc à prouver que pour tout $a > \mathbb{E}(X)$, M est presque-sûrement finie. Notons que :

$$\forall k \in \mathbb{N}, \ (M < +\infty) = \left(\sup_{n > k} \left(X_{k+1} + \dots + X_n \right) - (n-k)a < +\infty \right) \in \bigvee_{j > k} \sigma \left(X_j \right).$$

Donc $(M < +\infty) \in \bigcap_{k \in \mathbb{N}} \bigvee_{j > k} \sigma(X_j)$. C'est donc un événement asymptotique en les $(X_n)_{n \in \mathbb{N}^*}$. Comme les $(X_n)_{n \in \mathbb{N}^*}$, la loi du zéro-un de Kolmogorov (théorème 2.10.6) donne $\mathbb{P}(M < +\infty) \in \{0, 1\}$. Supposons par l'absurde que $\mathbb{P}(M < +\infty) = 0$, i.e. $\mathbb{P}(M = +\infty) = 1$. Pour $k \in \mathbb{N}$, on pose :

$$M_k = \sup_{0 \le n \le k} (S_n - nk)$$
 et $M'_k = \sup_{0 \le n \le k} (S_{n+1} - X_1 - nk)$.

Alors M_k et M_k' ont même loi. On a $M = \lim_{k \to +\infty} M_k$; posons $M' = \lim_{k \to +\infty} M_k'$. Alors M et M' ont même loi. Par ailleurs :

$$\forall k \in \mathbb{N}, \ M_{k+1} = \max(0, M'_k + X_1 - a) = M'_k - \min(M'_k, a - X_1).$$

D'où $\mathbb{E}\left(\min\left(M_k',a-X_1\right)\right)=\mathbb{E}\left(M_k'\right)-\mathbb{E}\left(M_{k+1}\right)\leqslant 0.$ Or $M_k'\geqslant 0$, donc on a la domination $\left|\min\left(M_k',a-X_1\right)\right|\leqslant |a-X_1|.$ Par convergence dominée :

$$\mathbb{E}\left(\min\left(M', a - X_1\right)\right) = \lim_{k \to +\infty} \mathbb{E}\left(\min\left(M'_k, a - X_1\right)\right) \leqslant 0.$$

Mais $M' = +\infty$ presque-sûrement, donc $\mathbb{E}\left(\min\left(M', a - X_1\right)\right) = \mathbb{E}\left(a - X_1\right) > 0$ comme $a > \mathbb{E}(X)$. C'est absurde.

Corollaire 3.2.3. Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires réelles indépendantes et suivant toutes la loi d'une variable aléatoire X. On suppose que X admet un moment d'ordre 1. Alors :

$$\frac{1}{n} \sum_{k=1}^{n} X_k \xrightarrow[n \to +\infty]{L^1} \mathbb{E}(X).$$

Remarque 3.2.4. Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires réelles positives indépendantes et suivant toutes la loi d'une variable aléatoire X t.q. $\mathbb{E}(X) = +\infty$. Alors $\frac{1}{n}\sum_{k=1}^{n} X_k \xrightarrow[n \to +\infty]{\text{p.s.}} +\infty$.

Exemple 3.2.5. Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes suivant la loi C(c), avec $c \in \mathbb{R}_+^*$ (c.f. exemple 1.4.6). Le calcul des fonctions caractéristiques montre que, pour tout $n \in \mathbb{N}^*$, $\frac{X_1 + \dots + X_n}{n}$ suit la loi C(c). Dans ce cas, la loi des grands nombres ne s'applique pas (car la loi de Cauchy n'admet pas de moment d'ordre 1).

3.3 Convergence en loi

Notation 3.3.1. On notera $C_b^0(\mathbb{R}^d)$ l'espace des fonctions continues bornées $\mathbb{R}^d \to \mathbb{R}$, muni de $\|\cdot\|_{\infty}$. On notera de plus $C_c^0(\mathbb{R}^d) \subset C_b^0(\mathbb{R}^d)$ le sous-espace des fonctions continues à support compact.

Définition 3.3.2 (Convergence étroite). Soit $(\mu_n)_{n\in\mathbb{N}}$ et μ des mesures de probabilité sur \mathbb{R}^d . On dit que $\mu_n \xrightarrow[n \to +\infty]{e} \mu$ $((\mu_n)_{n\in\mathbb{N}}$ converge étroitement vers μ) lorsque :

$$\forall \varphi \in \mathcal{C}_b^0\left(\mathbb{R}^d\right), \ \int_{\mathbb{R}^d} \varphi \ \mathrm{d}\mu_n \xrightarrow[n \to +\infty]{} \int_{\mathbb{R}^d} \varphi \ \mathrm{d}\mu.$$

Définition 3.3.3 (Convergence en loi). Soit $(X_n)_{n\in\mathbb{N}}$ et X des variables aléatoires à valeurs dans \mathbb{R}^d . On dit que $X_n \xrightarrow[n \to +\infty]{\text{loi}} X$ ($(X_n)_{n\in\mathbb{N}}$ converge vers X en loi) lorsque $\mathbb{P}_{X_n} \xrightarrow[n \to +\infty]{\text{e}} \mathbb{P}_X$, i.e.

$$\forall \varphi \in \mathcal{C}_b^0\left(\mathbb{R}^d\right), \ \mathbb{E}\left(\varphi\left(X_n\right)\right) \xrightarrow[n \to +\infty]{} \mathbb{E}\left(\varphi(X)\right).$$

Remarque 3.3.4.

- (i) On peut parler de convergence en loi de variables aléatoires définies sur des espaces distincts.
- (ii) La variable aléatoire "limite", en cas de convergence en loi, n'est pas unique.

Proposition 3.3.5. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires à valeurs dans \mathbb{N} , et X une variable aléatoire à valeurs dans \mathbb{N} . S'équivalent :

- (i) $X_n \xrightarrow[n \to +\infty]{\text{loi}} X$.
- (ii) $\forall k \in \mathbb{N}, \ \mathbb{P}(X_n = k) \xrightarrow[n \to +\infty]{} \mathbb{P}(X = k).$

Exemple 3.3.6.

- (i) Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires réelles t.q. pour tout $n\in\mathbb{N}$, X_n admet une densité p_n . On suppose que $(p_n)_{n\in\mathbb{N}}$ converge presque-partout et que $\exists q\in L^1, \forall n\in\mathbb{N}, |p_n|\leqslant q$. Alors $(X_n)_{n\in\mathbb{N}}$ converge en loi.
- (ii) Pour $n \in \mathbb{N}^*$, soit $X_n \sim \mathcal{U}\left(\left\{0, \frac{1}{n}, \frac{2}{n}, \dots, 1\right\}\right)$. Alors $(X_n)_{n \in \mathbb{N}^*}$ converge en loi vers $\mathcal{U}([0, 1])$.
- (iii) Pour $n \in \mathbb{N}$, soit $X_n \sim \mathcal{N}(0, \sigma_n^2)$, où $(\sigma_n)_{n \in \mathbb{N}} \in (\mathbb{R}_+^*)^{\mathbb{N}}$ est t.q. $\sigma_n \xrightarrow[n \to +\infty]{} 0$. Alors $(X_n)_{n \in \mathbb{N}}$ converge en loi vers la mesure de Dirac en 0.

3.4 Convergence des mesures empiriques

Définition 3.4.1 (Mesure empirique). Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires à valeurs dans \mathbb{R}^d . Pour $\omega \in \Omega$ et $n \in \mathbb{N}^*$, on définit la mesure empirique de l'échantillon $(X_1(\omega), \ldots, X_n(\omega))$ par :

$$\mu_{n,\omega} = \frac{1}{n} \sum_{k=1}^{n} \delta_{X_k(\omega)},$$

où δ_x est la mesure de Dirac en x pour tout $x \in \mathbb{R}^d$.

Lemme 3.4.2. Soit $(\mu_n)_{n\in\mathbb{N}}$ et μ des mesures de probabilité sur \mathbb{R}^d . Soit $H\subset \mathcal{C}_b^0\left(\mathbb{R}^d\right)$ t.q. $\overline{H}\supset \mathcal{C}_c^0\left(\mathbb{R}^d\right)$ (pour $\|\cdot\|_{\infty}$). S'équivalent :

- (i) $\mu_n \xrightarrow[n \to +\infty]{e} \mu$.
- (ii) $\forall f \in \mathcal{C}_c^0\left(\mathbb{R}^d\right), \ \int_{\mathbb{R}^d} f \ \mathrm{d}\mu_n \xrightarrow[n \to +\infty]{} \int_{\mathbb{R}^d} f \ \mathrm{d}\mu.$
- (iii) $\forall f \in H, \ \int_{\mathbb{R}^d} f \ d\mu_n \xrightarrow[n \to +\infty]{} \int_{\mathbb{R}^d} f \ d\mu.$

Théorème 3.4.3 (Théorème de Glivenko-Cantelli). Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes à valeurs dans \mathbb{R}^d et suivant toutes la loi d'une variable aléatoire X. Alors, pour presque tout $\omega \in \Omega$:

$$\mu_{n,\omega} \xrightarrow[n \to +\infty]{\mathrm{e}} \mathbb{P}_X.$$

Démonstration. On veut montrer que, pour presque tout $\omega \in \Omega$:

$$\forall f \in \mathcal{C}_b^0\left(\mathbb{R}^d\right), \underbrace{\int_{\mathbb{R}^d} f \, \mathrm{d}\mu_{n,\omega}}_{\frac{1}{n} \sum_{i=1}^n f(X_i(\omega))} \xrightarrow[n \to +\infty]{} \underbrace{\int_{\mathbb{R}^d} f \, \mathrm{d}\mathbb{P}_X}_{\mathbb{E}(f(X))}.$$

Or, la loi forte des grands nombres (théorème 3.2.2) donne :

$$\forall f \in \mathcal{C}_b^0\left(\mathbb{R}^d\right), \ \frac{1}{n} \sum_{i=1}^n f\left(X_i\right) \xrightarrow[n \to +\infty]{\text{p.s.}} \mathbb{E}\left(f(X)\right).$$

On se donne maintenant H un sous-ensemble dénombrable et dense de $C_c^0(\mathbb{R}^d)$. On a alors $\forall f \in H$, $\frac{1}{n} \sum_{i=1}^n f(X_i) \xrightarrow[n \to +\infty]{\text{p.s.}} \mathbb{E}(f(X))$. H étant dénombrable, on en déduit que pour presque tout $\omega \in \Omega$: $\forall f \in H$, $\frac{1}{n} \sum_{i=1}^n f(X_i(\omega)) \xrightarrow[n \to +\infty]{\text{p.s.}} \mathbb{E}(f(X))$. Le lemme 3.4.2 permet maintenant de conclure.

Théorème 3.4.4 (Théorème central limite). Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires réelles indépendantes et suivant toutes la loi d'une variable aléatoire X. On suppose que X admet un moment d'ordre X. Notons $X_n = X_n + \cdots + X_n + X_n + \cdots + X_n + X_n + \cdots + X_n + X_n$

$$\frac{S_n - n\mathbb{E}(X)}{\sigma\sqrt{n}} \xrightarrow[n \to +\infty]{\text{loi}} \mathcal{N}(0,1).$$

Démonstration. Quitte à remplacer X par $\frac{1}{\sigma}(X - \mathbb{E}(X))$, on suppose que $\mathbb{E}(X) = 0$ et $\sigma = 1$. On calcule alors les fonctions caractéristiques :

$$\forall \xi \in \mathbb{R}, \ \Phi_{S_n/\sqrt{n}}(\xi) = \Phi_X \left(\frac{\xi}{\sqrt{n}}\right)^n.$$

Or X admet un moment d'ordre 2 donc Φ_X est de classe \mathcal{C}^2 , d'où, à $\xi \in \mathbb{R}$ fixé :

$$\Phi_X\left(\frac{\xi}{\sqrt{n}}\right) = 1 - \frac{\xi^2}{2n} + o\left(\frac{1}{n}\right).$$

Or il existe $n_0 \in \mathbb{N}$ t.q. $\forall n \geqslant n_0$, $\left| \Phi_X \left(\frac{\xi}{\sqrt{n}} \right) - 1 \right| < 1$. Si on note Log : $\mathbb{C} \setminus \mathbb{R}_- \to \mathbb{C}$ la détermination principale du logarithme, on a alors :

$$\forall \xi \in \mathbb{R}, \ \Phi_{S_n/\sqrt{n}}(\xi) = \exp\left(n \operatorname{Log}\left(\Phi_X\left(\frac{\xi}{\sqrt{n}}\right)\right)\right) \xrightarrow[n \to +\infty]{} \exp\left(-\frac{\xi^2}{2}\right) = \Phi_Y(\xi),$$

où $Y \sim \mathcal{N}(0,1)$. D'après le théorème 3.5.1, on a bien $\frac{S_n}{\sqrt{n}} \xrightarrow[n \to +\infty]{\text{loi}} Y$.

3.5 Théorème de Lévy

Théorème 3.5.1 (Théorème de Lévy).

(i) Soit $(\mu_n)_{n\in\mathbb{N}}$ et μ des mesures de probabilité sur \mathbb{R}^d . Alors :

$$\left(\mu_n \xrightarrow[n \to +\infty]{} \mu\right) \Longleftrightarrow \left(\forall \xi \in \mathbb{R}^d, \ \hat{\mu}_n(\xi) \xrightarrow[n \to +\infty]{} \hat{\mu}(\xi)\right),$$

où $\hat{\mu}$ désigne la transformée de Fourier de μ (c.f. définition 1.9.8).

(ii) Soit $(X_n)_{n\in\mathbb{N}}$ et X des variables aléatoires à valeurs dans \mathbb{R}^d . Alors :

$$\left(X_n \xrightarrow[n \to +\infty]{\text{loi}} X\right) \Longleftrightarrow \left(\forall \xi \in \mathbb{R}^d, \; \Phi_{X_n}(\xi) \xrightarrow[n \to +\infty]{} \Phi_X(\xi)\right).$$

Démonstration. (i) Il est clair que si $\mu_n \xrightarrow[n \to +\infty]{e} \mu$, alors $\hat{\mu}_n \xrightarrow[n \to +\infty]{e} \hat{\mu}$ simplement, car pour tout $\xi \in \mathbb{R}^d$, $x \longmapsto \frac{e^{i\langle \xi | x \rangle}}{(2\pi)^{d/2}}$ est une fonction continue bornée. Réciproquement, supposons que $\hat{\mu}_n \xrightarrow[n \to +\infty]{e} \hat{\mu}$ simplement. On se place dans le cas où d = 1. Pour $\sigma \in \mathbb{R}^*_+$, on pose $g_\sigma : x \in \mathbb{R} \longmapsto \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x}{\sigma}\right)^2\right)$. On note :

$$H = \left\{ g_{\sigma} * f, \ \sigma \in \mathbb{R}_{+}^{*}, \ f \in \mathcal{C}_{c}^{0} \left(\mathbb{R} \right) \right\} \subset \mathcal{C}_{b}^{0} \left(\mathbb{R} \right).$$

Pour tout $f \in \mathcal{C}_c^0(\mathbb{R})$, on a $g_{\sigma} * f \xrightarrow[\sigma \to 0]{} f$ uniformément, ce qui prouve que $\overline{H} \supset \mathcal{C}_c^0(\mathbb{R})$. Selon le lemme 3.4.2, il suffit de prouver que $\forall \varphi \in H$, $\int_{\mathbb{R}} \varphi \ d\mu_n \xrightarrow[n \to +\infty]{} \int_{\mathbb{R}} \varphi \ d\mu$. Pour cela, notons que si $\sigma \in \mathbb{R}_+^*$ et $f \in \mathcal{C}_c^0(\mathbb{R})$, on a pour toute mesure ν , selon le lemme 1.9.9:

$$\int_{\mathbb{R}} g_{\sigma} * f \, d\nu = \frac{1}{\sigma \sqrt{2\pi}} \int_{\mathbb{R}} f(x) \left(\int_{\mathbb{R}} e^{-i\xi x} g_{1/\sigma}(\xi) \hat{\nu}(-\xi) \, d\xi \right) \, dx.$$

Comme $\hat{\mu}_n \xrightarrow[n \to +\infty]{} \hat{\mu}$ simplement, on en déduit par convergence dominée que $\int_{\mathbb{R}} g_{\sigma} * f \, d\mu_n \xrightarrow[n \to +\infty]{} \int_{\mathbb{R}} g_{\sigma} * f \, d\mu$, d'où le résultat. (ii) C'est un corollaire direct de (i).

3.6 Autres caractérisations de la convergence en loi

Théorème 3.6.1 (Théorème porte-manteau). Soit $(\mu_n)_{n\in\mathbb{N}}$ et μ des mesures de probabilité sur \mathbb{R}^d . Sont équivalentes :

- (i) $\mu_n \xrightarrow[n \to +\infty]{e} \mu$.
- (ii) $\forall G \text{ ouvert } de \mathbb{R}^d, \lim \inf_{n \to +\infty} \mu_n(G) \geqslant \mu(G).$
- (iii) $\forall F \text{ ferm} \acute{e} \text{ de } \mathbb{R}^d, \lim \sup_{n \to +\infty} \mu_n(F) \leqslant \mu(F).$
- (iv) $\forall B \in \text{Bor}\left(\mathbb{R}^d\right), \ \mu\left(\partial B\right) = 0 \Longrightarrow \mu_n(B) \xrightarrow[n \to +\infty]{} \mu(B).$

Démonstration. (i) \Rightarrow (ii) Soit G un ouvert de \mathbb{R}^d . Soit $(\varphi_k)_{k \in \mathbb{N}}$ une suite croissante de fonctions continues positives convergeant simplement vers $\mathbb{1}_G$, par exemple $\varphi_k : x \longmapsto \min \left(1, k \cdot d\left(x, \mathbb{R}^d \backslash G\right)\right)$. Ainsi :

$$\lim_{n \to +\infty} \inf \mu_n(G) = \lim_{n \to +\infty} \inf \int_{\mathbb{R}} \sup_{k \in \mathbb{N}} \varphi_k \, d\mu_n = \lim_{n \to +\infty} \inf \sup_{k \in \mathbb{N}} \int_{\mathbb{R}} \varphi_k \, d\mu_n$$

$$\geqslant \sup_{k \in \mathbb{N}} \lim_{n \to +\infty} \inf \int_{\mathbb{R}} \varphi_k \, d\mu_n = \sup_{k \in \mathbb{N}} \int_{\mathbb{R}} \varphi_k \, d\mu = \int_{\mathbb{R}} \sup_{k \in \mathbb{N}} \varphi_k \, d\mu = \mu(G).$$

(ii) \Leftrightarrow (iii) Il suffit de passer au complémentaire. (ii) et (iii) \Rightarrow (iv) Soit $B \in \text{Bor } (\mathbb{R}^d)$ t.q. $\mu(\partial B) = 0$. Alors $\mu(B) = \mu(\overline{B}) = \mu(\mathring{B})$, d'où :

$$\mu(B) = \mu\left(\mathring{B}\right) \leqslant \liminf_{n \to +\infty} \mu_n\left(\mathring{B}\right) \leqslant \liminf_{n \to +\infty} \mu_n(B) \leqslant \limsup_{n \to +\infty} \mu_n(B) \leqslant \limsup_{n \to +\infty} \mu_n\left(\overline{B}\right) \leqslant \mu\left(\overline{B}\right) = \mu(B).$$

(iv) \Rightarrow (i) Soit $\varphi \in C_b^0(\mathbb{R}^d)$. Quitte à écrire $\varphi = \varphi^+ - \varphi^-$, on peut supposer que $\varphi \geqslant 0$. Soit K > 0 t.q. $\forall x \in \mathbb{R}^d$, $0 \leqslant \varphi(x) \leqslant K$. On a :

$$\int_{\mathbb{R}^d} \varphi \, d\mu = \int_0^K \mu \left(\underbrace{\varphi^{-1} \left([t, +\infty[) \right)}_{A_t} \right) \, dt.$$

Et on a la même égalité en remplaçant μ par μ_n . Or $\partial A_t \subset \varphi^{-1}$ ($\{t\}$) pour tout $t \in [0, K]$. Et φ^{-1} ($\{t\}$) est de mesure strictement positive (pour μ) pour au plus un nombre dénombrable de valeurs de t. On en déduit que pour presque tout $t \in [0, K]$ (au sens de la mesure de Lebesgue), $\mu(\partial A_t) = 0$. Par hypothèse, on a donc $\mu_n(A_t) \xrightarrow[n \to +\infty]{} \mu(A_t)$ pour presque tout $t \in [0, K]$. Par convergence dominée,il vient $\int_{\mathbb{R}^d} \varphi \ d\mu_n \xrightarrow[n \to +\infty]{} \int_{\mathbb{R}^d} \varphi \ d\mu$.

Corollaire 3.6.2. Soit $(X_n)_{n\in\mathbb{N}}$ et X des variables aléatoires réelles. Alors :

$$\left(X_n \xrightarrow[n \to +\infty]{\text{loi}} X\right) \Longleftrightarrow \left(\forall x \in \mathbb{R}, \ F_X \ \mathcal{C}^0 \ en \ x \Longrightarrow F_{X_n}(x) \xrightarrow[n \to +\infty]{} F_X(x)\right).$$

Théorème 3.6.3. Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires réelles indépendantes et suivant toutes la loi d'une variable aléatoire X. On suppose que X admet un moment d'ordre Z. Notons $\sigma = \sqrt{\operatorname{Var}(X)}$, et posons $S_n = X_1 + \cdots + X_n$ pour $n \in \mathbb{N}^*$. Alors :

$$\forall (a,b) \in \mathbb{R}^2, \ a \leqslant b \Longrightarrow \mathbb{P}\left(a \leqslant \frac{S_n - n\mathbb{E}(X)}{\sigma\sqrt{n}} \leqslant b\right) \xrightarrow[n \to +\infty]{} \frac{1}{\sqrt{2\pi}} \int_a^b e^{-\frac{x^2}{2}} \, \mathrm{d}x.$$

3.7 Convergence en probabilité

Définition 3.7.1 (Convergence en probabilité). Soit $(X_n)_{n\in\mathbb{N}}$ et X des variables aléatoires réelles définies sur Ω . On dit que $X_n \xrightarrow[n \to +\infty]{\mathbb{P}} X$ $((X_n)_{n\in\mathbb{N}}$ converge en probabilité vers X) lorsque :

$$\forall \varepsilon > 0, \ \mathbb{P}\left(|X_n - X| > \varepsilon\right) \xrightarrow[n \to +\infty]{} 0.$$

Proposition 3.7.2. On note \mathcal{L}^0 l'espace des variables aléatoires $\Omega \to \mathbb{R}$ et L^0 le quotient de \mathcal{L}^0 par la relation d'égalité presque-partout. On définit :

$$d:(X,Y)\in\left(L^{0}\right)^{2}\longmapsto\mathbb{E}\left(\min\left(1,\left|X-Y\right|\right)\right).$$

Alors:

(i) d est une distance sur L^0 .

(ii) Soit $(X_n)_{n\in\mathbb{N}}$ et X des variables aléatoires réelles définies sur Ω . Alors :

$$\left(X_n \xrightarrow[n \to +\infty]{\mathbb{P}} X\right) \Longleftrightarrow \left(d\left(X_n, X\right) \xrightarrow[n \to +\infty]{} 0\right).$$

(iii) L'espace métrique (L^0, d) est complet.

Proposition 3.7.3. Soit $(X_n)_{n\in\mathbb{N}}$ et X des variables aléatoires réelles définies sur Ω . Si $X_n \xrightarrow{\mathbb{P}} X$, alors on peut extraire de $(X_n)_{n\in\mathbb{N}}$ une sous-suite convergeant presque-sûrement vers X.

4 Transformée de Fourier

4.1 Définitions et premières propriétés

Définition 4.1.1 (Transformée de Fourier d'une fonction L^1). Soit $f \in L^1(\mathbb{R}^d)$. La transformée de Fourier de f est définie par :

$$\hat{f}: \xi \in \mathbb{R}^d \longmapsto \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} e^{-i\langle \xi | x \rangle} f(x) \, dx.$$

Notation 4.1.2. Soit $y \in \mathbb{R}^d$.

(i) On définit un opérateur de translation $\tau_y: L^1\left(\mathbb{R}^d\right) \to L^1\left(\mathbb{R}^d\right)$ par :

$$\forall f \in L^1(\mathbb{R}^d), \ \forall x \in \mathbb{R}^d, \ \tau_y f(x) = f(x - y).$$

(ii) On définit un opérateur de modulation $e_y: L^1\left(\mathbb{R}^d\right) \to L^1\left(\mathbb{R}^d\right)$ par :

$$\forall f \in L^1\left(\mathbb{R}^d\right), \ \forall x \in \mathbb{R}^d, \ e_y f(x) = e^{i\langle y|x\rangle} f(x).$$

(iii) On définit un opérateur de réflexion $R:L^1\left(\mathbb{R}^d\right)\to L^1\left(\mathbb{R}^d\right)$ par :

$$\forall f \in L^1(\mathbb{R}^d), \ \forall x \in \mathbb{R}^d, \ Rf(x) = f(-x).$$

Proposition 4.1.3.

(i) On a:

$$\forall f \in L^1(\mathbb{R}^d), \ \widehat{\tau_y f} = e_{-y} \hat{f} \qquad et \qquad \widehat{e_y f} = \tau_f \hat{f}.$$

(ii) Soit $a \in \mathbb{R}^*$. On pose $g : x \in \mathbb{R}^d \longmapsto f\left(\frac{x}{a}\right)$. Alors :

$$\forall \xi \in \mathbb{R}^d, \ \hat{g}(\xi) = |a|^d \hat{f}(a\xi).$$

(iii) On a:

$$\forall f \in L^1\left(\mathbb{R}^d\right), \ \overline{\hat{f}} = R\hat{\overline{f}}.$$

Proposition 4.1.4. Soit $f \in L^1(\mathbb{R}^d)$. Alors \hat{f} est uniformément continue et :

$$\hat{f}(\xi) \xrightarrow{\|\xi\| \to +\infty} 0.$$

De plus, $\|\hat{f}\|_{\infty} \leqslant \frac{1}{(2\pi)^{d/2}} \|f\|_{1}$. En particulier, l'application :

$$\begin{vmatrix} L^1 \left(\mathbb{R}^d \right) \longrightarrow L^{\infty} \left(\mathbb{R}^d \right) \\ f \longmapsto \hat{f} \end{vmatrix}$$

est linéaire continue.

Proposition 4.1.5 (Formule de réciprocité). Soit $(f,g) \in L^1(\mathbb{R}^d)^2$. Alors $\hat{f}g$ et $f\hat{g}$ sont intégrables et :

$$\int_{\mathbb{D}^d} \hat{f}g = \int_{\mathbb{D}^d} f\hat{g}.$$

4.2 Propriétés de régularités

Notation 4.2.1 (Multi-indices). Soit $\alpha \in \mathbb{N}^d$.

- (i) On note $|\alpha| = \sum_{i=1}^d \alpha_i$.
- (ii) Pour $x \in \mathbb{R}^d$, on note $x^{\alpha} = x_1^{\alpha_1} \cdots x_d^{\alpha_d}$.

Notation 4.2.2. Soit F un espace de Banach, U un ouvert de \mathbb{R}^m , $f:U\to F$, $a\in U$. Supposons f k fois différentiable en a. Pour $\alpha\in\mathbb{N}^m$ t.g. $|\alpha|\leqslant k$, on pose :

$$\partial^{\alpha} f(a) = \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \left(\frac{\partial}{\partial x_2}\right)^{\alpha_2} \cdots \left(\frac{\partial}{\partial x_m}\right)^{\alpha_m} f(a).$$

Proposition 4.2.3. Soit $f \in L^1(\mathbb{R}^d)$. On suppose qu'il existe un entier $k \in \mathbb{N}^*$ t.q. $x \longmapsto x^k f(x)$ est intégrable. Alors $\hat{f} \in C^k(\mathbb{R}^d)$ et pour tout multi-indice $\alpha \in \mathbb{N}^d$ t.q. $|\alpha| \leq k$, on a:

$$\partial^{\alpha} \hat{f}(\xi) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} e^{-i\langle \xi | x \rangle} (-ix)^{\alpha} f(x) \, dx.$$

Proposition 4.2.4. Soit $f \in L^1(\mathbb{R}^d)$. On suppose qu'il existe un entier $k \in \mathbb{N}^*$ t.q. $f \in C^k(\mathbb{R}^d)$ et $\forall \alpha \in \mathbb{N}^d$, $|\alpha| \leq k \Longrightarrow \partial^{\alpha} f \in L^1(\mathbb{R}^d)$. Alors, pour tout $\alpha \in \mathbb{N}^d$ t.q. $|\alpha| \leq k$, on a:

$$\forall \xi \in \mathbb{R}^d, \ \widehat{\partial^{\alpha} f}(\xi) = (i\xi)^{\alpha} \widehat{f}(\xi).$$

Corollaire 4.2.5. Soit $f \in L^1(\mathbb{R}^d)$. On suppose qu'il existe un entier $k \in \mathbb{N}^*$ t.q. $f \in C^k(\mathbb{R}^d)$ et $\forall \alpha \in \mathbb{N}^d$, $|\alpha| \leq k \Longrightarrow \partial^{\alpha} f \in L^1(\mathbb{R}^d)$. Alors:

$$\hat{f}(\xi) = o_{+\infty} \left(\frac{1}{\|\xi\|^k} \right).$$

4.3 Convolution

Proposition 4.3.1. Soit $(f,g) \in L^1(\mathbb{R}^d)^2$. Alors:

$$\widehat{f * g} = (2\pi)^{d/2} \widehat{f} \cdot \widehat{g},$$

avec $\forall x \in \mathbb{R}^d$, $(f * g)(x) = \int_{\mathbb{R}^d} f(x - y)g(y) \, dy$.

Exemple 4.3.2. Pour $\sigma \in \mathbb{R}_+^*$, on pose :

$$g_{\sigma}: x \in \mathbb{R}^d \longmapsto \frac{1}{\sigma^d} \exp\left(-\left(\frac{\|x\|}{\sigma}\right)^2\right).$$

Alors:

$$\hat{g}_{\sigma} = \frac{1}{\sigma^d} g_{1/\sigma}.$$

4.4 Formule d'inversion

Théorème 4.4.1. Soit $f \in L^1(\mathbb{R}^d)$ t.q. $\hat{f} \in L^1(\mathbb{R}^d)$. Alors :

$$\widehat{\left(\widehat{f}\right)} = Rf,$$

où R est l'opérateur défini dans la notation 4.1.2.

Corollaire 4.4.2. L'application :

$$\begin{vmatrix} L^1 \left(\mathbb{R}^d \right) \longrightarrow L^{\infty} \left(\mathbb{R}^d \right) \\ f \longmapsto \hat{f} \end{vmatrix}$$

est linéaire continue et injective.

4.5 Transformée de Fourier dans L^2

Proposition 4.5.1. Soit $f \in \mathcal{C}_c^{\infty}\left(\mathbb{R}^d\right) \subset L^1\left(\mathbb{R}^d\right) \cap L^2\left(\mathbb{R}^d\right)$. Alors $\hat{f} \in L^2\left(\mathbb{R}^d\right)$ et :

$$\left\|\hat{f}\right\|_2 = \left\|f\right\|_2.$$

Définition 4.5.2 (Transformée de Fourier d'une fonction L^2). L'application :

$$\begin{vmatrix} \mathcal{C}_c^{\infty} \left(\mathbb{R}^d \right) \longrightarrow L^2 \left(\mathbb{R}^d \right) \\ f \longmapsto \hat{f} \end{vmatrix}$$

est une isométrie (peut-être pas surjective) donc une application uniformément continue. Comme $C_c^{\infty}(\mathbb{R}^d)$ est dense dans $L^2(\mathbb{R}^d)$ et comme $L^2(\mathbb{R}^d)$ est complet, cette application admet un unique prolongement uniformément continue $\mathcal{F}: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$. On dit que \mathcal{F} est la transformée de Fourier dans L^2 (ou la transformée de Fourier-Plancherel).

Théorème 4.5.3.

- (i) $\forall f \in L^1(\mathbb{R}^d) \cap L^2(\mathbb{R}^d), \ \mathcal{F}f = \hat{f}.$
- (ii) $\mathcal{F}: L^2\left(\mathbb{R}^d\right) \to L^2\left(\mathbb{R}^d\right)$ est une isométrie bijective.

Définition 4.5.4 (Écart-type). Soit $f \in L^2(\mathbb{R}) \setminus \{0\}$. Alors la fonction $\left(\frac{\|f\|}{\|f\|_2}\right)^2$ définit une densité de probabilité sur \mathbb{R} . On note $\sigma(f) \in [0, +\infty]$ l'écart-type associé.

Théorème 4.5.5 (Principe d'incertitude de Heisenberg). Soit $f \in L^2(\mathbb{R}) \setminus \{0\}$. Alors :

$$\sigma(f)\sigma\left(\mathcal{F}f\right)\geqslant \frac{1}{2},$$

avec égalité ssi f est une translation et modulation d'une gaussienne.

Démonstration. Par densité, on suppose que $f \in \mathcal{C}_c^{\infty}(\mathbb{R})$. Ainsi, $\mathcal{F}f = \hat{f}$. On pose X et Y des variables aléatoires réelles de densités respectives $\left(\frac{\|f\|}{\|f\|_2}\right)^2$ et $\left(\frac{\|\hat{f}\|}{\|\hat{f}\|_2}\right)^2$. On peut supposer que $\|f\|_2 = 1$ (donc $\|\hat{f}\|_2 = 1$) et $\mathbb{E}(X) = \mathbb{E}(Y) = 0$. On a :

$$\sigma\left(\hat{f}\right)^{2} = \int_{\mathbb{R}} \omega^{2} \left| \hat{f}(\omega) \right|^{2} d\omega = \int_{\mathbb{R}} \left| i\omega \hat{f}(\omega) \right|^{2} d\omega = \int_{\mathbb{R}} \left| \hat{f}'(\omega) \right|^{2} d\omega = \int_{\mathbb{R}} \left| f'(t) \right|^{2} dt.$$

En intégrant par parties, puis en utilisant l'inégalité de Cauchy-Schwarz, on a donc :

$$1 = \int_{\mathbb{R}} |f(t)|^2 dt = -2\Re \left(\int_{\mathbb{R}} t f(t) \overline{f'(t)} dt \right) \leqslant 2 \left(\int_{\mathbb{R}} t^2 |f(t)|^2 dt \right)^{1/2} \left(\int_{\mathbb{R}} |f'(t)|^2 dt \right)^{1/2} = 2\sigma(f)\sigma\left(\hat{f}\right).$$

4.6 Formule sommatoire de Poisson

Théorème 4.6.1 (Formule sommatoire de Poisson). Soit $F \in \mathcal{C}^1(\mathbb{R})$. On suppose que :

- (i) $\sum_{n\in\mathbb{Z}} |\hat{F}(2\pi n)| < +\infty$.
- (ii) $\exists M > 0, \ \exists \alpha > 1, \ \forall x \in \mathbb{R}, \ |F(x)| \leqslant \frac{M}{(1+|x|)^{\alpha}}.$

Alors:

$$\sum_{n \in \mathbb{Z}} \hat{F}(2\pi n) = \frac{1}{\sqrt{2\pi}} \sum_{n \in \mathbb{N}} F(n).$$

Démonstration. Considérer $f: x \in \mathbb{R} \longmapsto \sum_{n \in \mathbb{Z}} F(x+n)$. Montrer que f est périodique et suffisamment régulière et lui appliquer la théorie des séries de Fourier.

4.7 Équation de la chaleur

Remarque 4.7.1. Soit $f \in L^1(\mathbb{R}^d)$. L'équation de la chaleur s'écrit :

$$\begin{cases} \partial_t u = \frac{1}{2} \Delta u \\ u(0, \cdot) = f \end{cases},$$

d'inconnue $u: \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}$ deux fois différentiable. On peut chercher une solution de cette équation en "passant en Fourier en x". Sous hypothèse de régularité, si u est solution de l'équation de la chaleur, alors \hat{u} est solution de l'équation différentielle ordinaire suivante :

$$\begin{cases} \partial_t \hat{u} = -\frac{\|\xi\|^2}{2} \hat{u} \\ \hat{u}(0,\cdot) = f \end{cases}.$$

Ainsi, $\forall (t,\xi) \in \mathbb{R}_+ \times \mathbb{R}^d$, $\hat{u}(t,\xi) = \exp\left(-\frac{t}{2} \|\xi\|\right)^2 \hat{f}(\xi) = K \hat{g}_{\sqrt{t}}(\xi) \hat{f}(\xi)$, où $K \in \mathbb{R}_+^*$ est une constante et g_{σ} est la gaussienne d'écart-type σ (c.f. lemme 1.9.9). Il vient :

$$\forall (t,\xi) \in \mathbb{R}_+ \times \mathbb{R}^d, \ u(t,\xi) = Kg_{\sqrt{t}} * Rf.$$

On vérifie a posteriori qu'on a bien une solution de l'équation de la chaleur.

5 Processus de branchement

5.1 Arbres de Galton-Watson

Définition 5.1.1 (Arbre de Galton-Watson). Soit μ une loi de probabilité sur \mathbb{N} , $(X_{n,i})_{(n,i)\in(\mathbb{N}^*)^2}$ une famille de variables aléatoires indépendantes de loi μ . L'arbre de Galton-Watson de loi de reproduction μ est défini par la suite $(Z_n)_{n\in\mathbb{N}}$ définie par récurrence par :

$$Z_0 = 1$$
 et $\forall n \in \mathbb{N}, \ Z_{n+1} = \sum_{i=1}^{Z_n} X_{n+1,i}.$

Il s'interprète comme suit : à l'étape n, on a n individus, chacun se reproduit et donne $X_{n,i}$ descendants, et Z_n représente le nombre d'individus de la n-ième génération.

Définition 5.1.2. Soit μ une loi de probabilité sur \mathbb{N} . On considère l'arbre de Galton-Watson $(Z_n)_{n\in\mathbb{N}}$ de loi de reproduction μ .

- (i) On dit que l'arbre est infini, ou qu'il y a survie, lorsque $\forall n \in \mathbb{N}, Z_n \neq 0$.
- (ii) Dans le cas contraire, on dit que l'arbre est fini ou qu'il y a extinction.

Remarque 5.1.3. Soit μ une loi de probabilité sur \mathbb{N} . On considère l'arbre de Galton-Watson de loi de reproduction μ .

- (i) $Si \mu(\{0\}) = 0$, l'arbre est presque-sûrement infini.
- (ii) $Si \mu(\{0\}) > 0$, il y a une probabilité non nulle qu'il y ait extinction.

Théorème 5.1.4. Soit μ une loi de probabilité sur \mathbb{N} t.q. $\mu(\{1\}) \neq 1$. On note $m_{\mu} = \sum_{k \in \mathbb{N}} k\mu(\{k\})$ la moyenne de μ et on considère l'arbre de Galton-Watson de loi de reproduction μ .

- (i) Si $m_{\mu} \leq 1$, il y a extinction presque-sûrement.
- (ii) Si $m_{\mu} > 1$, il y a une probabilité non nulle de survie.

On parle de phase sous-critique (resp. phase sur-critique) lorsque $m_{\mu} < 1$ (resp. $m_{\mu} > 1$). On parle de phase critique lorsque $m_{\mu} = 1$.

Démonstration. Soit X une variable aléatoire de loi μ . Soit $n \in \mathbb{N}^*$ Calculons la série génératrice (c.f. définition 1.9.5) de Z_n en fonction de celle de X:

$$\forall s \in [0, 1], \ G_{Z_{n}}(s) = \sum_{y \in \mathbb{N}} \mathbb{P}(Z_{n} = y) \, s^{y} = \sum_{y \in \mathbb{N}} \sum_{x \in \mathbb{N}} \mathbb{P}(Z_{n} = y \mid Z_{n-1} = x) \, \mathbb{P}(Z_{n-1} = x) \, s^{y}$$

$$= \sum_{y \in \mathbb{N}} \sum_{x \in \mathbb{N}} \mathbb{P}\left(\sum_{i=1}^{x} X_{n,i} = y\right) \mathbb{P}(Z_{n-1} = x) \, s^{y}$$

$$= \sum_{x \in \mathbb{N}} \mathbb{P}(Z_{n-1} = x) \sum_{y \in \mathbb{N}} \mathbb{P}\left(\sum_{i=1}^{x} X_{n,i} = y\right) s^{y}$$

$$= \sum_{x \in \mathbb{N}} \mathbb{P}(Z_{n-1} = x) \, G_{\sum_{i=1}^{x} X_{n,i}}(s) = \sum_{x \in \mathbb{N}} \mathbb{P}(Z_{n-1} = x) \, (G_{X}(s))^{x}$$

$$= \left(G_{Z_{n-1}} \circ G_{X}\right)(s).$$

Par récurrence, on en déduit que $\forall n \in \mathbb{N}, G_{Z_n} = (G_X)^n = \underbrace{G_X \circ \cdots \circ G_X}_{n \text{ fois}}$. On s'intéresse maintenant

à l'événement d'extinction : $E = \bigcup_{n \in \mathbb{N}} (Z_n = 0)$. Par réunion croissante, on a :

$$\mathbb{P}(E) = \lim_{n \to +\infty} \mathbb{P}\left(Z_n = 0\right) = \lim_{n \to +\infty} G_{Z_n}(0) = \lim_{n \to +\infty} \left(G_X\right)^n(0).$$

On se ramène donc à une étude de système dynamique : on montre que si $m_{\mu} = G'_X(1) \leq 1$, alors G_X a un unique point fixe (qui est 1), sinon G_X a exactement deux points fixes (un en 1 et un dans [0,1[).

Remarque 5.1.5. Le calcul précédent montre que $\mathbb{E}(Z_n) = G'_{Z_n}(1) = (G'_X(1))^n = m_\mu^n$.

5.2 Phases sous-critique et critique pour les arbres de Galton-Watson

Proposition 5.2.1. Soit μ une loi de probabilité sur \mathbb{N} t.q. $m_{\mu} = \sum_{k \in \mathbb{N}} k\mu\left(\{k\}\right) < 1$. On considère l'arbre de Galton-Watson $(Z_n)_{n \in \mathbb{N}}$ de loi de reproduction μ . Alors :

$$\forall n \in \mathbb{N}, \ \mathbb{P}(Z_n > 0) \leqslant m_{\mu}^n.$$

Démonstration. Noter que :

$$\mathbb{P}\left(Z_{n}>0\right)=1-\left(G_{X}\right)^{n}\left(0\right)=G_{X}\left(1\right)-G_{X}\left(\left(G_{X}\right)^{n-1}\left(0\right)\right)\leqslant m_{\mu}\left(1-\left(G_{X}\right)^{n-1}\left(0\right)\right)=m_{\mu}\mathbb{P}\left(Z_{n-1}>0\right).$$

Proposition 5.2.2. Soit μ une loi de probabilité sur \mathbb{N} t.q. $\mu(\{1\}) \neq 1$ et $m_{\mu} = \sum_{k \in \mathbb{N}} k \mu(\{k\}) = 1$. On suppose que μ admet un moment d'ordre 2 et que $\sigma_{\mu}^2 = \sum_{k \in \mathbb{N}} k(k-1)\mu(\{k\}) \neq 0$. On considère l'arbre de Galton-Watson $(Z_n)_{n \in \mathbb{N}}$ de loi de reproduction μ . Alors:

$$\mathbb{P}\left(Z_n > 0\right) \sim \frac{2}{n\sigma_{\mu}^2}.$$

Démonstration. Noter que $G_X(s) = 1 - (1-s) + \frac{(1-s)^2}{2} \sigma_{\mu}^2 + o_1((1-s)^2)$. Ainsi :

$$\frac{1}{1-G_X(s)} - \frac{1}{1-s} \sim \frac{\sigma_\mu^2}{2}.$$

Comme $(G_X)^n(0) \xrightarrow[n \to +\infty]{} 1$, il vient $\frac{1}{1-(G_X)^n(0)} - \frac{1}{1-(G_X)^{n-1}(0)} \sim \frac{\sigma_\mu^2}{2}$. On obtient le résultat en sommant.

5.3 Phase sur-critique pour les arbres de Galton-Watson

5.3.1 Conditionnement à l'extinction

Lemme 5.3.1. Soit μ une loi de probabilité sur \mathbb{N} . On considère l'arbre de Galton-Watson $(Z_n)_{n\in\mathbb{N}}$ de loi de reproduction μ et on note $T = \sum_{n\in\mathbb{N}} Z_n$. Si $(X_n)_{n\in\mathbb{N}^*}$ est une suite de variables aléatoires indépendantes de loi μ et si $S_n = X_1 + \cdots + X_n - (n-1)$ pour $n \in \mathbb{N}^*$, alors T a la même loi que :

$$T' = \min \left\{ n \in \mathbb{N}^*, \ S_n = 0 \right\}.$$

Théorème 5.3.2. Soit μ une loi de probabilité sur \mathbb{N} t.q. $m_{\mu} = \sum_{k \in \mathbb{N}} k\mu\left(\{k\}\right) > 1$. On note q > 0 la probabilité d'extinction. Alors le processus conditionné à l'extinction est un arbre de Galton-Watson dont la loi de reproduction μ_q est donnée par :

$$\forall k \in \mathbb{N}, \ \mu_q(\{k\}) = \mu(\{k\}) q^{k-1}.$$

De plus, ce processus est sous-critique.

Exemple 5.3.3. On suppose que μ est une loi de Poisson de paramètre $\lambda > 1$ (c.f. exemple 1.4.5). On se donne $\lambda' < 1$ t.q. $\lambda e^{-\lambda} = \lambda' e^{-\lambda'}$. Alors un arbre de Galton-Watson de loi de reproduction $\mathcal{P}(\lambda)$ conditionné à l'extinction est un arbre de Galton-Watson de loi de reproduction $\mathcal{P}(\lambda')$.

5.3.2 Population totale

Théorème 5.3.4. Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variable aléatoires réelles indépendantes suivant toutes la loi d'une variable aléatoire X. On suppose X intégrable. Pour $a \in \mathbb{R}$, on note :

$$I(a) = \begin{cases} \sup_{t \ge 0} \left(ta - \ln \mathbb{E} \left(e^{tX} \right) \right) & \text{si } a > \mathbb{E}(X) \\ \sup_{t \le 0} \left(ta - \ln \mathbb{E} \left(e^{tX} \right) \right) & \text{si } a \le \mathbb{E}(X) \end{cases}.$$

Alors:

- (i) $\forall a \geqslant \mathbb{E}(X), \ \forall n \in \mathbb{N}^*, \ \mathbb{P}(X_1 + \dots + X_n \geqslant na) \leqslant e^{-nI(a)}.$
- (ii) $\forall a \leq \mathbb{E}(X), \forall n \in \mathbb{N}^*, \mathbb{P}(X_1 + \dots + X_n \leq na) \leq e^{-nI(a)}.$

Démonstration. On se place dans le cas où $a \ge \mathbb{E}(X)$ (sinon, on remplace X par -X). Alors :

$$\forall t \in \mathbb{R}_+, \ \mathbb{P}\left(X_1 + \dots + X_n \geqslant na\right) = \mathbb{P}\left(\exp\left(t\sum_{i=1}^n X_i\right) \geqslant \exp\left(tna\right)\right)$$

$$\leqslant e^{-tna}\mathbb{E}\left(\exp\left(t\sum_{i=1}^n X_i\right)\right) = \exp\left(-n\left(ta + \ln\mathbb{E}\left(e^{tX}\right)\right)\right).$$

D'où le résultat en passant au sup sur t.

Théorème 5.3.5. Soit μ une loi de probabilité sur \mathbb{N} t.q. $m_{\mu} = \sum_{k \in \mathbb{N}} k \mu\left(\{k\}\right) > 1$. On considère l'arbre de Galton-Watson $(Z_n)_{n \in \mathbb{N}}$ de loi de reproduction μ et on note $T = \sum_{n \in \mathbb{N}} Z_n$. Alors :

$$\forall k \in \mathbb{N}, \ \mathbb{P}(k \leqslant T < +\infty) \leqslant \frac{e^{-kI}}{1 - e^{-I}},$$

$$o\grave{u}\ I = \sup_{t \in \mathbb{R}_{-}} \left(t - \ln \mathbb{E}\left(e^{tX}\right) \right) > 0.$$

Démonstration. Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes de loi μ . Pour $n\in\mathbb{N}^*$, on pose $S_n=X_1+\cdots+X_n-(n-1)$ et :

$$T' = \min \left\{ n \in \mathbb{N}^*, \ S_n = 0 \right\}.$$

Alors T et T' ont même loi selon le lemme 5.3.1. Et on a :

$$\forall k \in \mathbb{N}, \ \mathbb{P}\left(k \leqslant T < +\infty\right) = \sum_{s=k}^{\infty} \mathbb{P}\left(T' = s\right) \leqslant \sum_{s=k}^{\infty} \mathbb{P}\left(X_1 + \dots + X_s \leqslant s\right).$$

On applique le théorème 5.3.4 pour obtenir $\mathbb{P}(k \leqslant T < +\infty) \leqslant \sum_{s=k}^{\infty} e^{-sI}$. Après avoir montré que $I \neq 0$ (par exemple en observant la dérivée de $t \longmapsto t - \ln \mathbb{E}\left(e^{tX}\right)$ en 0), on en déduit l'inégalité souhaitée.

Temps d'arrêt et population totale d'un arbre de Galton-Watson 5.4

Théorème 5.4.1. Soit $(Y_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes et identiquement distribuées à valeurs dans $\mathbb{N} \cup \{-1\}$. On fixe $k \in \mathbb{N}$ et on considère, pour $n \in \mathbb{N}^*$:

$$S_n = k + Y_1 + \dots + Y_n$$
 et $H_0 = \min \{ n \in \mathbb{N}^*, S_n = 0 \}$.

Alors:

$$\forall n \in \mathbb{N}^*, \ \mathbb{P}(H_0 = n) = \frac{k}{n} \mathbb{P}(S_n = 0).$$

Autrement dit, $\forall n \in \mathbb{N}^*, \ \mathbb{P}(H_0 = n \mid S_n = 0) = \frac{k}{n}.$

Démonstration. On raisonne par récurrence sur n. Pour n = 1, le résultat est clair. Pour l'hérédité, on conditionne selon la valeur de Y_1 .

Théorème 5.4.2. Soit μ une loi de probabilité sur \mathbb{N} . On considère l'arbre de Galton-Watson $(Z_n)_{n\in\mathbb{N}}$ de loi de reproduction μ et on note $T = \sum_{n \in \mathbb{N}} Z_n$. Si $(X_n)_{n \in \mathbb{N}^*}$ est une suite de variables aléatoires $ind\'ependantes\ de\ loi\ \mu,\ alors$:

$$\forall n \in \mathbb{N}^*, \ \mathbb{P}(T=n) = \frac{1}{n} \mathbb{P}(X_1 + \dots + X_n = n-1).$$

Démonstration. Appliquer le lemme 5.3.1 puis le théorème 5.4.1.

6 Marches aléatoires

Généralités 6.1

Définition 6.1.1 (Marche aléatoire). Soit μ une loi de probabilité sur \mathbb{Z}^d , et soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes de loi μ . On appelle marche aléatoire de loi de saut μ la suite $(S_n)_{n\in\mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N}, \ S_n = \sum_{k=1}^n X_k \in \mathbb{Z}^d.$$

Définition 6.1.2 (Récurrence et transience). Soit μ une loi de probabilité sur \mathbb{Z}^d . On considère la marche aléatoire $(S_n)_{n\in\mathbb{N}}$ de loi de saut μ . Pour $x\in\mathbb{Z}^d$, on note :

$$\mathcal{R}_x = \limsup_{n \to +\infty} \left(S_n = x \right) = \bigcap_{N \in \mathbb{N}} \bigcup_{n > N} \left(S_n = x \right).$$

Autrement dit, \mathcal{R}_x est l'événement "la marche aléatoire passe par x une infinité de fois".

- (i) Si $\mathbb{P}(\mathcal{R}_0) = 1$, on dit que la marche aléatoire est récurrente, et on a alors $\mathbb{P}(\bigcap_{x \in \mathbb{Z}^d} \mathcal{R}_x) = 1$.
- (ii) $Si \mathbb{P}(^{\mathfrak{C}}\mathcal{R}_0) = 1$, on dit que la marche aléatoire est transiente, et on a alors $\mathbb{P}(\bigcap_{x \in \mathbb{Z}^d} {}^{\mathfrak{C}}\mathcal{R}_x) = 1$.

6.2Principe de dichotomie

Notation 6.2.1. Soit $(S_n)_{n\in\mathbb{N}}$ une marche aléatoire sur \mathbb{Z}^d de loi de saut μ .

- On définit une fonction $g: x \in \mathbb{Z}^d \longmapsto \sum_{n \in \mathbb{N}} \mathbb{P}(S_n = x) \in [0, +\infty].$ On définit une suite $(H_0^{(k)})_{k \in \mathbb{N}}$ de variables aléatoires par $H_0^{(0)} = 0$ et $\forall k \in \mathbb{N}, H_0^{(k+1)} = 0$ $\inf \{ n > H_0^{(k)}, \ S_n = 0 \}.$
- On note de plus $H_0 = H_0^{(1)}$.

Lemme 6.2.2. Soit $(S_n)_{n\in\mathbb{N}}$ une marche aléatoire sur \mathbb{Z}^d de loi de saut μ . Alors :

$$\forall k \in \mathbb{N}, \ \mathbb{P}\left(H_0^{(k)} < +\infty\right) = \mathbb{P}\left(H_0 < +\infty\right)^k.$$

Démonstration. Pour $r \in \mathbb{N}$ et $m \in \mathbb{N}$, on pose $S_m^{(r)} = \sum_{k=r+1}^{r+m} X_k$. Ainsi, pour $k \in \mathbb{N}$:

$$\mathbb{P}\left(H_0^{(k+1)} < +\infty\right) = \sum_{r=1}^{\infty} \mathbb{P}\left(H_0^{(k)} = r, H_0^{(k+1)} < +\infty\right) = \sum_{r=1}^{\infty} \mathbb{P}\left(\left(H_0^{(k)} = r\right) \cap \bigcup_{m \in \mathbb{N}^*} \left(S_m^{(r)} = 0\right)\right)$$

$$= \sum_{r=1}^{\infty} \mathbb{P}\left(H_0^{(k)} = r\right) \mathbb{P}\left(\bigcup_{m \in \mathbb{N}^*} \left(S_m^{(r)} = 0\right)\right) = \sum_{r=1}^{\infty} \mathbb{P}\left(H_0^{(k)} = r\right) \mathbb{P}\left(H_0 < +\infty\right)$$

$$= \mathbb{P}\left(H_0^{(k)} < +\infty\right) \cdot \mathbb{P}\left(H_0 < +\infty\right).$$

On en déduit le résultat par récurrence.

Proposition 6.2.3. Soit $(S_n)_{n\in\mathbb{N}}$ une marche aléatoire sur \mathbb{Z}^d de loi de saut μ . Alors :

$$g(0) = \frac{1}{1 - \mathbb{P}(H_0 < +\infty)}.$$

Démonstration. Notons qu'on a une bijection entre $\{n \in \mathbb{N}, S_n = 0\}$ et $\{k \in \mathbb{N}, H_0^{(k)} < +\infty\}$. Donc :

$$g(0) = \mathbb{E}\left(\sum_{n \in \mathbb{N}} \mathbb{1}\left(S_n = 0\right)\right) = \mathbb{E}\left(\sum_{k \in \mathbb{N}} \mathbb{1}\left(H_0^{(k)} < +\infty\right)\right) = \sum_{k \in \mathbb{N}} \mathbb{P}\left(H_0 < +\infty\right)^k = \frac{1}{1 - \mathbb{P}\left(H_0 < +\infty\right)}.$$

Théorème 6.2.4. Soit $(S_n)_{n\in\mathbb{N}}$ une marche aléatoire sur \mathbb{Z}^d de loi de saut μ .

- (i) Si $\mathbb{P}(H_0 < +\infty) < 1$ (i.e. $g(0) < +\infty$), alors la marche aléatoire est transiente.
- (ii) Si $\mathbb{P}(H_0 < +\infty) = 1$ (i.e. $g(0) = +\infty$), alors la marche aléatoire est récurrente. En particulier, $\mathbb{P}(\mathcal{R}_0) \in \{0,1\}$.

Démonstration. (i) Supposons $\mathbb{P}(H_0 < +\infty) < 1$. Alors $\mathbb{E}(\sum_{n \in \mathbb{N}} \mathbb{1}(S_n = 0)) = g(0) < +\infty$ donc $\sum_{n \in \mathbb{N}} \mathbb{1}(S_n = 0)$ est presque-sûrement finie, et la marche aléatoire est transiente. (ii) Supposons $\mathbb{P}(H_0 < +\infty) = 1$. Alors $\forall k \in \mathbb{N}$, $\mathbb{P}(H_0^{(k)} < +\infty) = \mathbb{P}(H_0 < +\infty)^k = 1$. Donc, par intersection décroissante :

$$\mathbb{P}\left(\mathcal{R}_{0}\right) = \mathbb{P}\left(\bigcap_{k \in \mathbb{N}} \left(H_{0}^{(k)} < +\infty\right)\right) = \lim_{k \to +\infty} \mathbb{P}\left(H_{0}^{(k)} < +\infty\right) = 1.$$

Donc la marche aléatoire est récurrente.

6.3 Marche aléatoire simple

Définition 6.3.1 (Marche aléatoire simple). On appelle marche aléatoire simple $sur \mathbb{Z}^d$ la marche aléatoire dont la loi de saut μ est donnée par :

$$\forall i \in \{1, \dots, d\}, \ \mu(\{e_i\}) = \mu(\{-e_i\}) = \frac{1}{2d},$$

 $où (e_1, \ldots, e_d)$ est la base canonique de \mathbb{R}^d .

Lemme 6.3.2. La marche aléatoire simple sur \mathbb{Z}^d est récurrente ssi :

$$\int_{[-\pi,\pi]^d} \Re\left(\frac{1}{1-t\Phi_{\mu}(\xi)}\right) d\xi \xrightarrow[t\to 1^-]{} +\infty,$$

où $\Phi_{\mu}: \xi \in \mathbb{R}^d \longmapsto \int_{\mathbb{R}^d} e^{i\langle \xi| \cdot \rangle} d\mu = \sum_{x \in \mathbb{Z}^d} \mu\left(\{x\}\right) e^{i\langle \xi| x \rangle} \text{ est la fonction caractéristique de } \mu.$

30

Démonstration. Pour $t \in [0,1]$, posons $g_t(0) = \sum_{n \in \mathbb{N}} t^n \mathbb{P}(S_n = 0)$. Ainsi $g(0) = \lim t \to 1^- g_t(0)$ par convergence monotone. Soit $n \in \mathbb{N}$. En considérant la mesure μ^{*n} (produit de convolution itéré n fois), on a :

$$\int_{[-\pi,\pi]^d} \Phi_{\mu}(\xi)^n d\xi = \int_{[-\pi,\pi]^d} \Phi_{\mu^{*n}}(\xi) d\xi = \sum_{x \in \mathbb{Z}^d} \mu^{*n} (\{x\}) \int_{[-\pi,\pi]^d} e^{i\langle \xi | x \rangle} d\xi$$
$$= (2\pi)^d \mu^{*n} (\{0\}) = (2\pi)^d \mathbb{P} (S_n = 0).$$

On en déduit par convergence dominée que $\forall t \in [0,1[, g_t(0) = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \frac{1}{1-t\Phi_{\mu}(\xi)} d\xi$, puis on passe à la partie réelle, on fait tendre $t \to 1^-$ et on applique le théorème 6.2.4.

Théorème 6.3.3 (Théorème de Pólya).

- (i) Si $d \leq 2$, la marche aléatoire simple sur \mathbb{Z}^d est récurrente.
- (ii) Si $d \geqslant 3$, la marche aléatoire simple sur \mathbb{Z}^d est transiente.

Démonstration. Cas 1: d = 1. On a :

$$\forall m \in \mathbb{N}, \ \mathbb{P}\left(S_{2m} = 0\right) = \binom{2m}{m} \left(\frac{1}{2}\right)^{2m} \sim \frac{1}{\sqrt{\pi m}}.$$

Il vient $g(0) = \sum_{n \in \mathbb{N}} \mathbb{P}(S_n = 0) = +\infty$, donc la marche aléatoire est récurrente selon le théorème 6.2.4. Cas 2: d = 2. On pose $\varepsilon_1 = \frac{\sqrt{2}}{2}(1,1) \in \mathbb{Z}^2$, $\varepsilon_2 = \frac{\sqrt{2}}{2}(-1,1) \in \mathbb{Z}^2$. Alors $(\varepsilon_1, \varepsilon_2)$ est une base de \mathbb{R}^2 dont on note $(\varepsilon_1^*, \varepsilon_2^*)$ la base duale. Pour $n \in \mathbb{N}$, on note $S_n^{(1)} = \varepsilon_1^*(S_n)$ et $S_n^{(2)} = \varepsilon_2^*(S_n)$. Alors $S_n^{(1)} = \mathbb{E}_n^* = \mathbb{E}_n^* = \mathbb{E}_n^*$ sont des marches aléatoires simples indépendantes sur \mathbb{Z} . Donc :

$$\forall m \in \mathbb{N}, \ \mathbb{P}(S_{2m} = 0) = \mathbb{P}(S_{2m}^{(1)} = 0) \,\mathbb{P}(S_{2m}^{(2)} = 0) \sim \frac{1}{\pi m}.$$

Il vient $g(0) = +\infty$, donc la marche aléatoire est récurrente selon le théorème 6.2.4. Cas $3: d \geqslant 3$. On a :

$$\forall \xi \in \mathbb{R}^d, \ \Phi_{\mu}(\xi) = \frac{1}{d} \sum_{k=1}^d \cos(\xi_k).$$

Donc $\frac{1}{1-\Phi_{\mu}(\xi)} \sim \frac{2d}{\|\xi\|^2}$. On conclut alors avec le lemme 6.3.2.

6.4 Exemples de résultats plus généraux en dimension 1

Théorème 6.4.1. Soit $(S_n)_{n\in\mathbb{N}}$ une marche aléatoire sur \mathbb{Z} de loi de saut μ . On suppose que $\sum_{k\in\mathbb{Z}} |k| \mu(\{k\}) < +\infty$. Alors la marche aléatoire est récurrente ssi $\sum_{k\in\mathbb{Z}} k\mu(\{k\}) = 0$.

Notation 6.4.2. Soit $(S_n)_{n\in\mathbb{N}}$ une marche aléatoire sur \mathbb{Z} de loi de saut μ . Pour $n\in\mathbb{N}^*$, on note $\overline{X}_n=\frac{S_n}{n}$.

Définition 6.4.3 (Entropie et pression). Soit $(S_n)_{n\in\mathbb{N}}$ une marche aléatoire sur \mathbb{Z} de loi de saut μ . On définit :

- (i) L'entropie $s: x \in \mathbb{R} \longmapsto \sup_{n \in \mathbb{N}^*} \left(\frac{1}{n} \ln \mathbb{P}\left(\overline{X}_n \geqslant x\right)\right)$.
- (ii) La pression $p: \lambda \in \mathbb{R}_+ \longmapsto \ln \mathbb{E}\left(e^{\lambda X_1}\right)$.

Lemme 6.4.4. Soit $(S_n)_{n\in\mathbb{N}}$ une marche aléatoire sur \mathbb{Z} de loi de saut μ . Alors :

$$\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}^*, \ \mathbb{P}(X_1 \geqslant x)^n \leqslant \mathbb{P}(\overline{X}_n \geqslant x) \leqslant e^{ns(x)}.$$

Théorème 6.4.5. Soit $(S_n)_{n\in\mathbb{N}}$ une marche aléatoire sur \mathbb{Z} de loi de saut μ . Alors :

$$\forall \lambda \in \mathbb{R}_+, \ p(\lambda) = \sup_{u \in \mathbb{R}} (\lambda u + s(u)).$$

Proposition 6.4.6. Soit $(S_n)_{n\in\mathbb{N}}$ une marche aléatoire sur \mathbb{Z} de loi de saut μ . Alors pour tout $x\in\mathbb{R}$, la suite $\left(-\ln\mathbb{P}\left(\overline{X}_n\geqslant x\right)\right)_{n\in\mathbb{N}^*}$ est sous-additive et la suite $\left(\frac{1}{n}\ln\mathbb{P}\left(\overline{X}_n\geqslant x\right)\right)_{n\in\mathbb{N}^*}$ converge dans $[-\infty,0]$ vers s(x).

Proposition 6.4.7. Soit $(S_n)_{n\in\mathbb{N}}$ une marche aléatoire sur \mathbb{Z} de loi de saut μ . Alors l'entropie s est concave.

Théorème 6.4.8 (Théorème de Cramér). Soit $(S_n)_{n\in\mathbb{N}}$ une marche aléatoire sur \mathbb{Z} de loi de saut μ . Alors pour tout $x\in\mathbb{R}$, la suite $\left(\frac{1}{n}\ln\mathbb{P}\left(\overline{X}_n\geqslant x\right)\right)_{n\in\mathbb{N}^*}$ converge dans $[-\infty,0]$ et :

$$\frac{1}{n} \ln \mathbb{P}\left(\overline{X}_n \geqslant x\right) \xrightarrow[n \to +\infty]{} \inf_{\lambda \in \mathbb{R}_+} \left(\ln \mathbb{E}\left(e^{\lambda X_1}\right) - \lambda x \right).$$