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Notation 0.0.1. We shall write K =R or C.

1 Topological vector spaces

1.1 Generalities

Definition 1.1.1 (Topological vector space). A topological vector space is a Hausdorff space E that
is also a K-vector space such that the maps (z,y) € E* — x+y € E and (\,z) E KXE+~— \x € E
are both continuous.

Example 1.1.2. Normed spaces are topological vector spaces.
Remark 1.1.3. Let E be a topological vector space.
(i) Forz € E, the translation 7, : y € E+—— x +y € E is a homeomorphism (with inverse 1_).
(ii) For A € K*, the dilatation hy : y € E+—— Ay € E is a homeomorphism (with inverse hy-1).
Corollary 1.1.4. Let E be a topological vector space.
(i) The neighbourhoods of x € E are exactly the translations of those of 0.
(ii) For A € K*, a subset V' C E is a neighbourhood of 0 iff A\V' is a neighbourhood of 0.

Proposition 1.1.5. Let E be a topological vector space. Then any neighbourhood V' of 0 in E 1is
absorbing, i.e.
Vee E,3r >0, VAeK, N <r=XxeV.

Proof. Choose z € E and consider v, : A € K — Az € E. The map 1, is continuous, so ¢, (V)
is a neighbourhood of 0 in K, i.e. there exists r > 0 s.t. 0 € Bg(r) C ¢;'(V). In other words,
¥, (Bg(r)) C V, which was to be proved. O

Definition 1.1.6 (Bounded subsets). Let E be a topological vector space. A subset A C E is said
to be bounded if for every neighbourhood V- of 0 in E, there exists r > 0 s.t. |\ <r= AACV.

Corollary 1.1.7. In topological vector spaces, singletons are bounded.

Proposition 1.1.8. Let E, F' be two topological vector spaces and f : E — F' be a linear map. Then
f s continuous iff f is continuous at 0.

Notation 1.1.9. If E, F are two topological spaces, we shall write L(E, F) for the set of all con-
tinuous linear maps from E to F. This is a K-vector space, which we would like to equip with the
structure of a topological vector space.



1.2 Completeness

Vocabulary 1.2.1. A complete normed space is called a Banach space.
Example 1.2.2.

(i) If K is a compact topological space, then the space C(K) of all continuous maps from K to K
is a Banach space, equipped with the supremum norm.

(i) If X is a o-finite measured space and p € [1,40c|, then the space LP(X) is a Banach space.
Theorem 1.2.3 (Baire Category Theorem). Let (X,d) be a complete metric space.
(i) If (On),ey s a countable family of dense open subsets of X, then U,ey Op is dense in X.

(ii) If (F),en 15 a countable family of closed subsets of X with empty interior, then N,en Fy has
an emply interior.

Definition 1.2.4 (Metric vector space). A metric vector space E is a topological vector space whose
topology is defined by a translation-invariant metric, i.e. a metric d s.t. there exists a map D : E —
Ry s.t. Y(z,y) € E, d(z,y) = D(x —y) (note that D is not necessarily homogeneous).

Theorem 1.2.5. Let E be a complete metric vector space, let F' be a topological vector space. For
any set & C L(E, F), the following assertions are equivalent:

(i) For allz € E, {p(z), ¢ € O} is bounded in F.

(ii) @ is equicontinuous, i.e. for any open subset W C F, there exists an open subset V C E s.t.
Vo €, p(V) CW.

(iii) @ is equicontinuous at 0, i.e. for any neighbourhood W of 0 in F', there ezists a neighbourhood
Vof0in E st. Vo€ ®, p(V)CW.

Proof. (i) < (ii) < (iii) Clear. (i) = (iii) Let W be a neighbourhood of 0 in F. As (z,y) — x —y
is continuous, there exists C' neighbourhood of 0 in F s.t. C —C = {c—¢, (¢,d) € C?*} C W.
Likewise, there exists U neighbourhood of 0 in F' s.t. U + U C C. Let us show that U C C: for
x € U, z — U is a neighbourhood of x, so it meets U, i.e. there exists y € U N (z — U); therefore,
there exists 2 € U s.t. 2 =y +2 € U +U C C. Hence, we get U — U C W. Now, define:
X=N¢"(0).
ped
The set X is closed in E. By assumption, for all x € E, there exists n € N* s.t. % {p(z), p€ ®} C U,
i.,e. x € nX. Therefore:
E = U nX.
neN*

By the Baire Category Theorem, there exists ny € N* s.t. 19X has nonempty interior. But X =
n—lo (npX), so X has a nonempty interior. Thus, there exists x € X and V neighbourhood of 0 in
E st. 2+ V C X. In other words: Vo € @, p(x + V) C U, so Vo € &, (V) C p(V -V) =
ox+V)—plx+V)CU-UCW. O

Corollary 1.2.6 (Uniform Boundedness Principle / Banach-Steinhaus Theorem). Let E be a Banach
space and let F' be a normed space. For any set ® C L(E, F), the following assertions are equivalent:

(i) Forallz € E, {¢(x), ¢ € ®} is bounded in F.
(ii) P is equicontinuous.

(iii) ® is equicontinuous at 0.



(iv) {ll¢ll, ¢ € ®} is bounded in R.
Remark 1.2.7. There are two ways to apply the Banach-Steinhaus Theorem:

(i) If we have a sequence (¢,),cn € L(E,F)N and a ¢ € L(E,F) s.t. Yz € E, ,(x) — ¢(x),
then the sequence (||¢nl|), ey 5 bounded, which leads to:

Vo € B, llp(@)l < (tminf el ) 2]
Hence, ¢ is linear continuous.

(i) If we have a sequence (¢,),cy € L(E,F)Y s.t. |¢u|| — 400, then there exists x € E s.t.
(0n()),en s unbounded. This is actually true for every x in a dense Gj.

Theorem 1.2.8 (Open Mapping Theorem / Banach—Schauder Theorem). Let E, F' be two complete
metric vector spaces and T : E — F be a linear continuous map.

(i) If T is onto, then for any V neighbourhood of 0 in E, T(V) is a neighbourhood of 0 in F.
(ii) If T is bijective, then it is a homeomorphism.

Proof. It is enough to prove (i). Suppose that 7" is onto and choose > 0. We need only prove that
ds > 0, TBg(r) 2 Br(s), where Bg(r) = {z € E, D(z) <r}. First step. Since Bg(r) is absorbing
(by Proposition 1.1.5), we have E = U, e+ nBg(r). And T is onto, so:

F=|J TnBg(r)= |J T(nBe(r)) = |J nTBg(r).

neN* neN* neN*

By the Baire Category Theorem, there exists ny € N* s.t. nogT Bg(r) has nonempty interior. There-
fore, T Bg(r) has nonempty interior. Second step. Let a € T Bg (g) and let U be a neighbourhood
of a in TBg (%) Then V' = U — U is a neighbourhood of 0 in F, and V' C T Bg(r). We have

proved that for all » > 0, there exists §(r) > 0 s.t. Bp(d(r)) € TBg(r), and we may assume
that 6(r) < r. Third step. Let r > 0 and y € Bp (5 (g)) Our aim is to find a © € Bg(r) s.t.
Tx = y. We construct an approximate solution of the equation. As y € TBg (%), there exists

r1 € Bg (g) st. y—Tx, € Bp (5 (%)) C TBg (i) Proceeding by induction, we construct a se-

quence (Zp),cn € EY st. x, € Bg(2™™r)and y — T (1 +---+x,) € Bp ((5 (2_(”+1)r>) for all
n € N*. Write z,, = x1 + --- + x,, for n € N*. Then the sequence (Z”)nEN* is Cauchy so it converges

to z € E. We easily check that y = Tz and z € Bg(r). This proves that TBg(r) 2 Br ((5 (g)) O

Theorem 1.2.9 (Closed Graph Theorem). Let E, F' be two complete metric vector spaces and T :
E — F be a linear map. Then T is continuous iff its graph G(T) = {(z,Tx), x € E} is closed in
ExF.

Proof. (=) Clear. (<) By assumption, G(7T') is closed so it is a complete metric vector space. Let
7 B x F — E be the first projection. Then the restriction mg(7) is linear continuous and bijective.
By Theorem 1.2.8, it is a homeomorphism, i.e. the inverse map = — (z,7Tx) is continuous. In
particular, T is continuous. O

2 Convexity

Definition 2.0.1 (Dual space). If E is a topological vector space, its dual space is E* = L(F,K).

Remark 2.0.2.



(i) If H is a Hilbert space, then H* is isometric to H.

(ii) If X is a measured space, p € [1,4+00| and q € |1,4+00] is the conjugate exponent of p (i.e.
1= % + %), then LP (X)* is isometric to LI (X).

(iii) However, in general, E* may be very small.

2.1 Locally convex topological vector spaces

Definition 2.1.1 (Local convexity). A topological vector space E is said to be locally convex if it
admits a basis of convex neighbourhoods of 0.

Example 2.1.2. Normed spaces are locally convez.
Proposition 2.1.3. Let E be a topological vector space.

(i) Every neighbourhood of 0 contains a balanced neighbourhood, i.e. a neighbourhood V- s.t. YV €
V,VAeK N <1l= M\ eV.

(ii) If E is locally convex, then every neighbourhood of 0 contains a balanced convex neighbourhood

of 0.

Proof. (i) Note that ¢ : (\,z) € K x E —— Mz € E is continuous and ¢(0,0) =0 € W, so ¢~ (W)
is a neighbourhood of (0,0). Hence, there exists a neighbourhood U; of 0 in K and a neighbourhood
Viof 0in Es.t. ¢ (Uy x Vi) C W, ie. U;Vy CW. We may assume that U; is balanced in K; thus,
V = U,V is balanced in E. (ii) Let W be a neighbourhood of 0. As E is locally convex, we may
assume that W is convex. Using point (i), W contains a balanced neighbourhood V; of 0. Now,
we easily check that the convex hull V' of V] is a balanced convex neighbourhood of 0, contained in

w. ]

Definition 2.1.4 (Semi-norm). If E is a vector space, a semi-norm on E is a map p : E — R,
that is homogeneous and satisfies the triangle inequality, but not necessarily the separation property
of norms.

Remark 2.1.5. If p is a semi-norm on a vector space E, then balls B,(r) = {x € E, p(z) <r} are
balanced and convex.

Definition 2.1.6 (Topology defined by a separating family of semi-norms). Consider a vector space
E equipped with a family of semi-norms (pa),c4 that is separating, i.e. s.t.

Ve € E\{0}, Ja € A, pa(z) # 0.

Then the family (pa),ca defines a translation-invariant topology on E: this is the coarsest topology
s.t. pa s continuous (equivalently, continuous at 0) for every a € A. A basis of neighbourhoods of 0
for this topology is the collection of all sets of the form N,ecj By, (%), where J is a finite subset of A
and n € N*.

Proposition 2.1.7 (Minkowski’s Gauge). Let W be a balanced convex subset of a vector space E.
Assume that W is absorbing and define:

1
jW:xEEr—>inf{t>0, tmGW}.
Then jw is a semi-norm. In addition, B = {x € E, jw(z) <1} and B' = {z € E, jw(z) < 1}

satisfy:
BCWCBH.



Proof. Note that W is absorbing, so the set {t >0, %x € W} is nonempty for all z € E. Therefore,
Jw : E — R, is well-defined. It is clear from the definition that jy is positively homogeneous (i.e.
VA € Ry, Vo € E, jw(Az) = Ajw(x)). Moreover, if p € K is s.t. |u| = 1, then uW =W as W
is balanced, so jw (ux) = jw(z). Therefore, jy is homogeneous. For the triangle inequality, choose
zr,y € E. Let a > jw(x) and b > jw(y). By convexity of W, ]R* x N W is convex, so it is of the form
Iz, where [ is an interval of R’ . Actually, Rz NW = }O )x Therefore, lx e W, likewise,

%y € W. By convexity:

(fv)

1 1

a+b a+b a-+b

Therefore, jw (z +y) < a+ b. Taking infimums over a and b, we obtain jy (z +vy) < jw(z) + jw(y).
The inclusions B C W C B’ are easy to prove. O

Theorem 2.1.8. If F is a locally convex topological vector space, then there exists a separating family
of semi-norms inducing the topology of E.

Proof. Let B be the set of balanced convex neighbourhoods of 0. According to Proposition 2.1.3,
B is a basis of neighbourhoods of 0. For all W € B, Minkowski’s Gauge ji is a semi-norm (c.f.
Proposition 2.1.7). Hence, we have a family (jw ), .z of semi-norms; it is separating because of
the fact that Vo € E\{0}, 3IW € B, v ¢ W (because E is Hausdorff). Hence, (jw ), .5 defines a
locally convex vector space topology on E; let B’ be the set of balanced convexed neighbourhoods of
0 for this topology. Using Proposition 2.1.3 again, B’ is a basis of neighbourhoods of 0 for the new
topology on E. Therefore, it is enough to prove that B = B'. If W € B, then W D B, (1), so W
is a neighbourhood of 0 in the new topology, and W is still balanced and convex; therefore W € B'.
Conversely, if W’ € B, then W’ contains a finite intersection of sets of the form B, (&), with € > 0
and W € B. Therefore, it is enough to prove that B;,, (¢) € B for all ¢ > 0 and W € B. We may
actually assume that € = 1. But according to the last part of Proposition 2.1.7:

w.

N | —

ij(l)Q{JIEE, jW(Q?)ﬁ;}{xGE jw(z) <1} 2

And B;,, (1) is balanced and convex, so Bj,, (1) € B. Hence B = B'. O

Proposition 2.1.9. Let E and F' be locally convex topological vector spaces, equipped with separating
families of semi-norms (pa),cq and (qﬁ)ﬁeB respectively.

(i) A sequence (x,), oy € EN converges towards x € E iff

Vo € A, po (x, —x) — 0.

(ii) LetT : E — F be a linear map. Then T is continuous iff for every § € B, there exists Cy € Ry
and a finite subset J3 C A s.t.
T<cC s
gse L = BB%%?P j

2.2 Fréchet spaces

Proposition 2.2.1. If E is a locally convex topological vector space whose topology is defined by a

countable family (pp),cn of semi-norms, then E is metrisable, with the distance d defined by:

Yy ot

= e ¢

Definition 2.2.2 (Fréchet space). A Fréchet space is a locally convex topological vector space E s.t.



(i) The topology of E is defined by a countable family of semi-norms (hence E is a metric vector
space).
(ii) E is complete.

Corollary 2.2.3. Fréchet spaces satisfy the Uniform Boundedness Principle (Corollary 1.2.6), the
Open Mapping Theorem (Theorem 1.2.8) and the Closed Graph Theorem (Theorem 1.2.9).

Example 2.2.4.

(i) If Q is an open subset of R", then the space C° (Q) of continuous functions Q — K, equipped
with the topology of uniform convergence on every compact set, is a Fréchet space.

(i) If Q is an open subset of R", then the space C* () of smooth functions Q@ — K, equipped
with the topology of uniform convergence of every partial derivative on every compact set, is a
Fréchet space.

(iii) If Q is an open subset of C, then the space H () of holomorphic functions 2 — C, equipped
with the topology of uniform convergence on every compact set, is a Fréchet space.

(iv) If K is a compact subset of R™, then the space C*°(K) consisting of restrictions to K of functions
of C* (R™) is a Fréchet space equipped with the family (py,) of semi-norms defined by:

Pm(g) = inf {sup {‘

2.3 Hahn-Banach Theorem

Definition 2.3.1 (Inductive set). Let S be an ordered set. A chain of S is a subset S" C S that is
totally ordered. The set S is said to be inductive if every chain S’ admits an upper-bound in S.

meN
omf

amlxl .. 8mnl‘n

7m1+_’_mn:m}vfecso(Rn)’ﬁK:g}

[o.9]
R

Theorem 2.3.2 (Zorn’s Lemma). If S is a nonempty inductive set, then S has a mazimal element.

Theorem 2.3.3 (Hahn-Banach Theorem). Let E be a real vector space, equipped with a function
p: E — R that is subadditive (i.e. ¥(x,y) € E? p(x+y) < p(z) +p(y)) and positively homogeneous
(i.e. VA€ Ry, Vo € E, p(Ax) = Ap(x)). Let F be a subspace of E and f : F' — R be a linear form.
Assume that f < p over F'. Then there exists a linear form ¢ : E — R s.t. pp = f and ¢ < p over
E.

Proof. Consider the set S of pairs (G, ¢g), where G is a subspace of E containing F', and g : G — R is
a linear form s.t. g = f and g < p over G. S is ordered by (G,g) < (H,h) iff G C H and g = hy¢.
We affirm that S is inductive; according to Zorn’s Lemma, it has a maximal element (M, p). It
remains to prove that M = E. Suppose for contradiction that M C E and choose x € E\M. Put
M’ = M & Rz and construct a linear form ¢’ : M’ — R defined by ¢}, = ¢ and p(x) = A, where A
is to be chosen. We want to have ¢’ < p, i.e.

V(y,t) € M xR, ¢(y+tx) = p(y) +tA < p(y + tz).

Because of positive homogeneity, we may restrict to ¢ € {£1}. This leads to the following inequalities:

sup (p(y) =ply —2)) < A < inf (p(z +2) —p(2)).

The choice of such a A is possible because sup,¢,, (¢(y) — p(y — 2)) < inf.en (p(2 +2) — ¢(2)), since
V(y,z) € M?, o(y) — ply —x) < p(z + ) — ¢(2). Hence, we have constructed (M’,¢’) € S, with
(M, p) < (M’',¢"). This contradicts the maximality of (M, ¢); therefore, M = E. O

Corollary 2.3.4. The dual space E* of a real locally convex topological vector space E separates the
points of E : if x,y € E with x # y, then there exists f € E* s.t. f(x) # f(y).

Corollary 2.3.5. Let E be a real normed space. If x € E, there exists ¢ € E* s.t. ¢(x) = ||z| and
lpll = 1.



2.4 Geometrical form of the Hahn-Banach Theorem

Lemma 2.4.1. Let E be a real locally convex topological vector space and C' be a nonempty convex
open subset of E and x € E\C. Then there exists ¢ € E*\{0} s.t. sups ¢ < p(z). In other words,
C is contained in a half-space delimited by the closed affine hyperplane x + Ker .

Proof. As the lemma is translation-invariant, we may assume that 0 € C. We consider j : y €
E — inf {t >0, 1y € C’}. As C'is absorbing (because it is a neighbourhood of 0), j(y) < +oo for
all y € E. Moreover, C' is convex, so j is convex. Finally, j is positively homogeneous (but j might
not be a semi-norm because C' might not be balanced). Consider F' = Rz and define a linear form
f:F — Rby f(x) = j(x). We have f < j on F. By the Hahn-Banach Theorem, there exists a
linear form ¢ : B — R s.t. p(z) = j(x) and ¢ < j on E. In particular, for y € C, ¢(y) < j(y) < 1,
so ¢ (]=2,42[) 2 C; by linearity, ¢ is continuous. Lastly, sup, ¢ <1 < p(x). O

Theorem 2.4.2. Let E be a real locally convex topological vector space. Consider two nonempty
convex disjoint subsets A, B of E.

(i) If A is open and B is closed, then Jp € E*\{0}, sup, ¢ < infg .
(i) If A is compact and B is closed, then 3o € E*\{0}, sup, ¢ < infp ¢.

Proof. (i) Define C = A — B = {a—b, (a,b) € A x B}. The set C is convex and open, and does
not contain 0. According to Lemma 2.4.1, there exists ¢ € E*\{0} s.t. supsp < ¢(0) = 0. As
supe ¢ = supy ¢ —infg ¢, this gives the desired result. (ii) For z € A, E\ B is an open neighbourhood
of , so there exists a convex open neighbourhood V, of 0 s.t. x+V, +V, C E\B. Now A C

Uzea (z + V). Since A is compact, there are points xy,...,zy € Ast. A C Ué-V:l (a:j + ij). Define

V = é-V:l Vz,;- V is an open convex neighbourhood of 0, and we have A +V C E\B. Hence,
(A + V) is open, convex and nonempty, and (A + V)N B = @. By (i), there exists ¢ € E*\{0}
s.t. supy @ < infpe. But sup, .y ¢ = sup, ¢ + supy ¢. Since ¢ is linear and V' is absorbing,
supy ¢ > 0, i.e. supy ¢ < infp . ]

Corollary 2.4.3. Let E be a real locally convex topological vector space, and let F C E be a subspace.
Then:

(i) F={zecE Vo B, (pr=0= p(z) =0)}.
(ii) F is dense in FE iff Vo € E*, (<p|p :0:><p:0).

Proof. Note that (ii) is a direct consequence of (i). For (i), apply Theorem 2.4.2 to the closed set F
and the compact set {x}, for x € E\F. O

2.5 Krein-Milman Theorem

Definition 2.5.1 (Extremal points). Let C' be a nonemptly convexr subset of a vector space E. A
point x € C' is said to be an extremal point of C' if:

V(y,2) € C?, VA E]0,1], (1= (1= Ny +\2) = y=2z=1.
The set of extremal points of C' is denoted by Extr(C').

Notation 2.5.2. If S C E is a subset of a vector space E, then the conver hull of S is denoted by
Conv(5).

Theorem 2.5.3 (Krein-Milman Theorem). Let K be a compact convex subset of a real locally convex
topological vector space E. Then:

K = Conv (Extr(K)).
In particular, K # @ = Extr(K) # @.



Proof. We assume that K # @ (otherwise the statement is trivial). We say that a subset S C K is
extremal if:

V(z,y) € K* VA €]0,1[, (1 = Na+ Ay € S) = {z,y} C S.

In particular, note that {z} is extremal iff x € Extr(K). First step: Extr(K) # @. Consider the set
X of all nonempty closed convex extremal subsets of K, ordered by reverse inclusion. Since K € X,
X # @. If C is a chain in X, then Ngee S € X, so X is inductive. By Zorn’s Lemma, X has a
maximal element S. Let us prove that S is a singleton. Suppose for contradiction that there exist
x # y in S. According to Corollary 2.3.4, there exists f € E* s.t. f(z) # f(y). Let m = supg f;
m is attained because S is compact and f is continuous. Hence, define S = S N f~1 ({m}); this is
a nonempty compact convex subset of K, and S’ C S because f is not constant on S. It remains
to prove that S’ is extremal in K: let (z,y) € K? and A €]0,1] s.t. (1—-XN)xz+ Ay € S'. As
(1=XNaz+ Ay €S, we have {x,y} C 5; therefore:

m=f((1=XNz+Xy)=(1-A) f(z)+X f(y) <m.

— =~

<m <m
Hence, equality holds throughout and f(z) = f(y) = m, so {x,y} C §'. This proves that 5’ is
extremal, i.e. S” € X. Since S’ C S, this contradicts the maximality of S (for reverse inclusion),
so S was a singleton, and Extr(K) # @. Second step: K = Conv (Extr(K)). The inclusion (D) is
clear, so it is enough to prove (C). Define K’ = Conv (Extr(K)). We have @ C K’ C K, and K’
is compact and convex. Suppose for contradiction that K’ C K, i.e. there exists x € K\K’'. By
Theorem 2.4.2, there exists ¢ € E* s.t.

sup ¢ < ¢(z).
K/

Define M = supy ¢. As above, define K; = K N~ ({M}); this is a nonempty compact convex
extremal subset of K. By the first step, K; has an extremal point z € Extr (K;) C Extr (K) C K.
But ¢(z) = M > ¢(x) > supg: ¢, so z ¢ K'. This is a contradiction, hence K = K. O

3 Duality

3.1 Weak-x topology and weak topology

Remark 3.1.1. If F is a normed space, E* may be equipped with the dual norm. It makes E* a
Banach space (even if E is not Banach).

Definition 3.1.2 (Weak-* topology). Let E be a locally convex topological vector space. The weak-x
topology of E* is the vector space topology defined by the separating family (qx),cp of semi-norms,
where:

Ve e E,Yf € E*, ¢.(f) = |f(z)].

The weak-+ topology is denoted by o (E*, E), it is the topology of simple convergence and makes E*
a locally convex topological vector space.

Definition 3.1.3 (Weak topology). Let E be a locally convex topological vector space and write T
for the topology of E. The weak topology of E is the vector space topology defined by the separating
family (pf) ;cp. of semi-norms, where:

Vf € B, Vo € B, pylx) = |f()].

The weak topology is denoted by o (E, E*), it is a new topology making E a locally convex topological
vector space. It is the coarsest topology on E s.t. every f € E* is continuous; therefore, o (E, E*) is
coarser than T . We use the word “weak” to refer to the topology o (E, E*) and “strong” to refer to
T.



Notation 3.1.4. Let E be a locally convex topological vector space.

i) If a sequence (f, e (E*)N converges to f € E* for the topology o (E*, E), we write f, = f;
neN
this is equivalent to Vx € E, f,(x) — f(x).

(ii) If a sequence (), .y € EN converges to x € E for the topology o (E, E*), we write x, — x;
this is equivalent to Vf € E*, f (z,) — f(x).

Proposition 3.1.5. Let E be a locally convex topological vector space. Then:
(E,o (E,E*))" = E".
In other words, a linear form f: E — R is weakly continuous ift it is strongly continuous.

Proposition 3.1.6. Let E be a real locally convex topological vector space. A convex subset C' C E
is weakly closed iff it is strongly closed.

Proof. (=) Since the weak topology is coarser than the strong topology, any weakly closed (not
necessarily convex) subset is also strongly closed. (<) Let C be a strongly closed convex subset of
E. Let us show that C' is weakly closed, i.e. E\C is weakly open. Let x € E\C. The sets {z}
and C' are nonempty disjoint convex subsets of E, {x} is strongly compact and C'is strongly closed.
According to Theorem 2.4.2, there exists a linear form ¢ € E* s.t.

o(x) < Hcl*f ®.

Now choose a s.t. p(z) < a < infep. The set H = {y € E, p(y) < a} is open for both topologies,
and z € H C F\C, so E\C is a weak neighbourhood of z. Hence, E\C' is weakly open. ]

Proposition 3.1.7. Let E be a locally convex topological vector space. Then any weak neighbourhood
of 0 in E contains a linear subspace of E of finite codimension. Likewise, any weak-x neighbourhood
of 0 in E* contains a linear subspace of E* of finite codimension.

3.2 Bidual

Proposition 3.2.1. Let E be a locally convex topological vector space. Then the map:

E— (E*,O(E*,E))*
0 s EFr— K
e f(w)

s a linear isomorphism.

Proof. ¢ is a well-defined, injective, linear map. Let us prove the surjectivity of 6. Let ¢ €
(E*,0 (E*, E))". Since ¢ is weakly-* continuous, there exist z1,...,zy € E and C € R, s.t.

Vi€ E, lp(f)] <C max ¢u;(f).

1<j<N
In particular ﬂé\f:l Kerd,;, C Ker ¢, which implies that ¢ € Vect (0, ..., 0zy) € ImJ. ]

Remark 3.2.2. If E is a normed space, its bidual is defined as E** = (E*,||-||)*; it is different
from (E* o (E*, E))".

Proposition 3.2.3. If E is a normed space, the map 6 : E — E** defined as in Proposition 3.2.1 is

a linear isometric embedding (but § may not be surjective), i.e. Yo € E, ||0(z)|l,, = ||z
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3.3 Weak or weak-* convergence of sequences

Proposition 3.3.1. Let E be a normed space. Let (z,,),on € BN, © € E, (f1),en € (BN, f e E*.
(i) If z, = z, then (||zn]]),en s bounded and:

ol < lim inf 1z, |

(i) If fu = f, then (|| full,), ey is bounded and:

171, < timinf 1],

Proof. (ii) For every z € E, (fu(®)),cy is bounded. By the Uniform Boundedness Principle
(Corollary 1.2.6), (||[fnll,),cy is bounded (because (£*-||,) is a Banach space). The inequality
can be obtained by taking the liminf in Vo € E, Vn € N, |fu(2)| < [|z||||fall,- (1) Apply (ii)
to the space F' = (E£*,|[|,) (hence F* = E**) and to the sequence (0, ),cy € (E*)". We have

Vf € E*, 05,(f) = f(2zn) = f(z) = 6:(f), 50 6z, = d,. Therefore, (||04,][,,),cy 15 bounded
and ||0.||,, < liminf, o |/dz,],,.- This provides the desired result since x +— d, is an isometric
embedding. ]

Proposition 3.3.2. Let E be a normed space. Let (z,,),on € BN, € E, (f1),en € (BN, f e E*.
(i) If v, — x and f, = f, then f, (x,) — f(x).
(ii) If x, = x and f, — f, then f, (x,) — f(z).
Example 3.3.3. Consider the Hilbert space H = ¢* (N). For n € N, define e, = (Onp)peny € H and
fn={en,"). Then f, =0, e, — 0 but f,(e,) =14 0.

3.4 Weak-x compactness

Theorem 3.4.1 (Banach-Alaoglu Theorem). Let E be a normed space. Then the unit ball of
(E*,||]],) is weakly-x compact.

Proof. View E* as a subspace of K”, endowed with the product topology, which is locally convex.
It induces the weak-* topology on E*. Write B, = {f € E*, || f||, < 1}. It is enough to prove that
B, is compact in K. If Ling (E,K) denotes the set of linear forms E — K, we have:

B. = Ling (B, K) N [ { € K%, [(@)] < [lal }.

zelE

K

Since K = [I,ep{y € K, |y| <|lz|}, K is compact according to Tychonoft’s Theorem. And the
space Ling (E,K) is closed in K¥, so B, is compact in K¥, i.e. weakly-* compact. ]

Remark 3.4.2. If E has infinite dimension, then Riesz’s Theorem states that the unit ball of
(E*,||]],) is never compact for the normed topology of E*.

Remark 3.4.3. In order for the Banach-Alaoglu Theorem to be useful, we want to be able to extract
convergent sequences. For this to be possible, we need (B.,o (E*, E)) to be metrisable.

Theorem 3.4.4. Let E be a Banach space. If B, = {f € E*, ||f|l, <1}, then (B.,0 (E*,E)) is
metrisable iff E is separable.

11



Proof. (<) Assume that E is separable and consider a dense sequence (x,,),.y € EV. For n € N,

define:
e it <1
T, =19 . .
TeoT otherwise
Then (x,),cy € BY, and (a,), o is dense in B, where B = {z € E, |z|| < 1}. Now define a distance
d on E* by:

V(p,¥) € (B"), dlg,v) = 327" @ (2) = ¥ (za)] < 20 = 9.

neN
The topology T4 defined by d on E* is the coarsest topology s.t. 0., : ¢ € E* — ¢ (x,) € R is
continuous for every n € N. In particular, 7; C o (E*, E) (because o (E*, E') makes ¢, continuous for
all z € E). Now consider the topology induced by 7z on B,. It is coarser than o (E*, F). To show
that it is finer than o (E*, E), it is enough to prove that 7; makes .5, continuous for all z € E.

Let © € B. For € > 0, there exists n € N s.t. ||z, — z|| < e. Hence, for every (¢,1) € (B,)” s.t.
d(p,9) < 27", we have:

o(x) = (@) < Nl Mlz = 2l + 91 1z = 2]l + 2"d(p, ¥) < 3e.

This proves that d,p, is continuous (for all z € B, hence for all z € E) when B, is equipped with d.
(=) Suppose that (B.,o (E*, E)) is metrisable; in particular, 0 admits a countable basis of weak-x
neighbourhoods (V,),,cy. For n € N, V, contains a finite intersection of kernels of continuous linear
forms on (E*, 0 (E*, E)). According to Proposition 3.2.1, these linear forms can be written as ¢, for
x € F; hence there exists a finite set A, C F s.t.

V.2 () {f € B, flx)=0}.

(EGATL

Let A = U,pen An; A is a countable subset of E. Using Corollary 2.4.3, let us show that Vect(A) is
dense in E. Let ¢ € E* (one may assume that ¢ € B,) s.t. ¢4 = 0; then:

pe ) () {feB flz) =0} C (] Vu= {0}

neNzecAy, neN
Therefore, Vect(A) is dense in F, so Vectg(A) is countable and dense in E. O
Remark 3.4.5. Even if E is a separable Banach space, (E*,0 (E*, E)) may not be metrisable.

Corollary 3.4.6. Let I be a separable Banach space. If (fy), ey s a bounded sequence in (E*, ||-||,),
then it admits a weakly-x converging subsequence.

Example 3.4.7.
(i) If Q is an open subset of R and p € [1,+o00], then LP(R) is a separable Banach space.

(i) Ifp € [1,400[, then (P(N) is a separable Banach space.

(iii) The space co = {a e RN, lim,ca = O} is a separable Banach space.

3.5 Reflexivity
Definition 3.5.1 (Reflexive space). Let E be a Banach space. The space E* has two topologies: the

weak-x topology and the normed topology. According to Proposition 3.2.1, we have an isomorphism
(E*,0 (E*,E))" ~ E. Recall that E** = (E*, ||-||,)" by definition. In general, the map:
E— E™
0: s b EF*— K
e f(a)

is a linear isometric embedding, called the canonical injection. The space E is said to be reflexive if
0 is an isomorphism.

12



Example 3.5.2.
(i) If Q is an open subset of R and p € |1,+00|, then LP(R) is a reflexive space.
(ii) If p € |1, 400, then (P(N) is a reflezive.

(iii) For any nonempty open set Q C R, LY(Q) and L>®(Q) are not reflexive. Likewise, ¢* (N) and
0> (N) are not reflexive.

Lemma 3.5.3. Let E be a real locally convex topological vector space. Let C' be a convex subset of
E.

(i) C is closed iff C' is an (arbitrary) intersection of closed half-spaces.

(ii) C is the intersection of all closed half-spaces containing C.

Lemma 3.5.4 (Goldstine’s Lemma). Let E be a real Banach space. Then the o (E**, E*)-closure of
0 (Bg), where Bg = {x € E, ||z|| <1}, is Bg« = {y € E**, |ly]l,, < 1}.

Proof. Apply Lemma 3.5.3 to 0 (Bg) for o (E**,E*). For f € E* and a € R, set Hs, =
{¢ € E**, o(f) < a}. Note that 6 (Bg) C Hy, iff || f]|, < a. Hence:

6(Be)" = (1 Hpa= () Hp=Bp-.
(f,a)eE*xR feBgx
6(Be)CHf,q

Remark 3.5.5. Let E be a Banach space. Then § (Bg) is |||, -closed.
Theorem 3.5.6. A real Banach space E is reflevive iff By = {z € E, ||x|| < 1} is weakly compact.

Proof. (=) If E is reflexive, then F is isometric to (E*, ||-]|,)", so accoding to the Banach-Alaoglu
Theorem (Theorem 3.4.1), § (Bg) is o (E**, E*)-compact. But o (E**, E*) = ¢ (0 (E, E*)), so Bg
is o (E, E*)-compact. (<) Suppose that Bgp is weakly compact. Since the topology induced by
o(E*,E*) on 0(F) is 0 (0 (E, E¥)), § (Bg) is weakly-* compact, in particular weakly-* closed. By
Goldstine’s Lemma (Lemma 3.5.4), § (Bg) = Bgs+, so 6(E) = E** by linearity. O

3.6 Uniform convexity

Definition 3.6.1 (Uniform convexity). A normed space E is said to be uniformly convex iff:

Ve >0, sup x2+yH<L

IvyEBE
llz—yll=e

Example 3.6.2.

(i) Hilbert spaces are uniformly conver because of the Parallelogram Identity.

(ii) If Q is an open subset of R? and p € |1, 400, then LP(Q2) is uniformly convex.
(ili) If p € |1, 400], then (P(N) is uniformly convex.

)

(iv) For any nonempty open set @ C R, LY(Q) and L>(Q) are not uniformly convex. Likewise,
(' (N) and (= (N) are not uniformly convex.

Theorem 3.6.3 (Milman—Pettis Theorem). If E is a uniformly convex real Banach space, then E
1s reflexive.

13



Proof. Note that 6(F) is closed in (E**, ||-||,,) because E is complete and 0 is an isometric embedding.
Hence, we have to prove that 6(E) is |-|,,-dense in E**. By linearity, it suffices to prove that

5(BE)||"‘** contains the unit sphere of E**. So let £ € E** with ||£||,, = 1. Let ¢ > 0. Set

1 — a = SUp zyeBy HL;Z/ there
. lo—yll>e
exists n € E* s.t.

, with a > 0 (because F is uniformly convex). By definition of |||

*ok )

l—a<ém<l and |y, =1

Define V- = {p € E*,0(n) > 1 —a}; V is a o (E*, E*)-open half-space of E** containing £. In
particular, V is a weak-* neighbourhood of . By Goldstine’s Lemma (Lemma 3.5.4), V' meets
0 (Bg): there exists x € Bg s.t. §, € VN0 (Bg). Now, note that if y € Bg is s.t. §, € VN (Bg),
then n(z) > 1 — a and n(y) > 1 — «, so:

rT+y
t-a<n () <l

By definition of «, we infer that ||y — x| < e. In other words, V N (Bg) C ¢ <$ +€§E). But
o (x + 5§E) is convex, ||-]], -closed, so it is o (E**, E*)-closed according to Proposition 3.1.6. There-

fore, ¢ € VN6 (Bg) Cé (:c + €§E), s0 ||€ — 04|,, < e. Hence, § (BE)”'”** contains the unit sphere
of E**. O

x—i—yH_
5 —

x—i—yH
5 )

3.7 Adjoint operators

Definition 3.7.1 (Adjoint operator). Let E and F be two locally convex topological vector spaces.
If T € L(E,F), define:
F*— FE*

(—(loT’

* .

We have T* € L (F*, E*).

Proposition 3.7.2. Let E and F be two normed spaces. For any T € L(E,F), the linear map
T* : F* — E* is continuous when F* and E* are equipped with their normed topologies (we already
know that it is continuous when F* and E* are equipped with their weak-x topologies). Moreover,

171, = 1T

Proposition 3.7.3. Let E and F be two locally convex topological vector spaces. Let T € L(E, F).
Consider T** € L (E**, F**), where E** = (E*,0 (E*,E))" and F** = (F*, o (F*,F))". Then the
following diagram is commutative:

E r F

|l

E** F**

In other words, for all x € E, T*, = 0py.

4 Theory of distributions

Notation 4.0.1. In what follows, Q) is a nonempty open subset of RY.

Notation 4.0.2. If K is a compact subset of ), we write K & ().
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4.1 Test functions

Definition 4.1.1 (Support of a function). Let f : Q — K be a function. We define the support of
[ by:
Supp f = Q\ U 0.

O open in Q
flo=0

Supp f is a closed subset of €.

Definition 4.1.2 (Compactly supported function). A function f : Q — K is said to be compactly
supported if Supp f is compact.

Definition 4.1.3 (Test functions).
(i) If K € Q, we define Dx(Q) = {f € C*(Q),Supp f € K}. We equip Dk () with the (count-
able) family (H'”N:K>NGN of semi-norms defined by:
1y = ma 107 -
jal=N
Dy () is a Fréchet space.

(ii) We define the space of test functions D(Q2) = {f € C=(R2), Supp f € 2} = Ugeq Dk (2). We
equip D(Q) with the finest topology s.t. for every K & €, the inclusion Dk(Q2) C D(R) is
continuous. Hence, D(Q) is a locally convex topological vector space (but not a Fréchet space).

Proposition 4.1.4. Let E be a locally convex topological vector space. If f: D(Q2) — E is a linear
map, then the following assertions are equivalent:

(i) f:D(Q) — E is continuous.
(ii) For every K € ), fipi) : Dx(2) = E is continuous.

Proposition 4.1.5. For every w € Q and 0 < r < d(z,0%), there exists a function u € D(Q) s.t.
u >0 and wp, = 1. In particular, D(SY) is nontrivial.

Ls) iftelo, 1]

Proof. Use the function ¢ : t € R — {SXP <_t(1*t) , which is C*. [

otherwise
Proposition 4.1.6 (Partitions of unity). Let I' C P (Rd) be a collection of open subsets of R%. Set
Q =Uper O C RY. Then there ezists a sequence (U,,), . € D(Q)N s.t.

(i) Yne N, ¥,, >0,
(ii) Yn € N, 30,, € T, Supp ¥,, € O,,
(iii) Y,en Vo =1 on Q and the sum is locally finite.
We say that (¥,), oy € D(Q)Y is a partition of unity subordinated to T'.

Proof. First step. For m € N* let K,, = {x €, d(z,00) >+ and [z < m}. Hence K,, €
Ky €@ Q and Q = Upens K- Given m € N*| for all © € K, there exists w, € I' s.t. © € wy;
choose r, > 0s.t. x € B (x,2r,) C w, and set V, = B (x,r,): thus x € V, € w,. Hence, the compact
set Ky, is covered by (V) , so there exists a finite subset F},, C Ky, s.t. (Vi) cp covers Ky,
Now set I = Upens Fin; F'is countable so we may write F' = {z;, j € N}. Thus Q = U;en Va;. Now

for any j € N, using Proposition 4.1.5, there exists ¢; € D({2) s.t. Suppy; € B (xj, %rmj> C Wa,,

0 <p; <1and Pilv,, = 1. Second step. For j € N, define W; = o; [Ti_y (1 — ¢x). We have
Ty

0<V,; <1, SuppV¥; € w,, and X ;cy V; = 1 (with the sum locally finite). O
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4.2 Distributions

Definition 4.2.1 (Distributions). We denote by D'(S2) the dual space of D(Y), equipped with the
weak-x topology. D' (L) is called the space of distributions on €.

Remark 4.2.2. Let A : D(Q) — K be a linear form. Then A is continuous iff

VK € Q, 3Nk € N, 3Ck < 400, Vo € D(Q), Suppp € K = [(A, )| < Cx max [|0%¢| -
aeN

lo| <Nk
If Ni can be chosen independent of K, we say that A is of order less than or equal to N.
Proposition 4.2.3. Let (A,), .y €D’ ()N let A : D(Q) — K be a linear form s.t.
Vo € D(Q), (An,p) = (A, )
Then A € D' (Q) (i.e. A is continuous) and A, = A.
Proof. Use the Uniform Boundedness Principle (Corollary 1.2.6). [

Remark 4.2.4. Distributions of order 0 correspond to continuous linear forms on the space of
continuous functions with compact support, i.e. to locally finite measures on €2.

Example 4.2.5.
i) If p is a locally finite measure on ), then A, : p € D(Q) — [ du is a distribution.
m Q
(ii) In particular, if a € €, then the Dirac mass d, : ¢ € D (Q) — p(a) is a distribution.
(iii) If f € LL.(Q), then Ay : ¢ € D(Q) — [ [ is a distribution, sometimes simply denoted by
f

4.3 Operations on distributions

Remark 4.3.1. Given an operator T € L (D (R2)), we have its adjoint T* € L (D' (R2)).
Definition 4.3.2 (Multiplication by a function). If 8 € C* (Q2), we consider:
My:peD(Q)— b0pecD(Q).

We have: Nf € L. (), MjA; = A, y. Hence, My will be called multiplication by 6, and we will

loc

write OA instead of MyA.

Definition 4.3.3 (Differentiation). If j € {1,...,d}, we consider:

8]‘:%0623(9)?—)07@62)(9).
0xj

We have: Vf € C1 (), 07Ny = —Ny;y. Hence, we will write —0;A instead of ;A. More generally,
if a € N is a multi-index, we write 0°A = (1)l (9%)* A.

Proposition 4.3.4 (Leibniz’s Formula). Let A € D' (Q2) and 0 € C>* (). For any multi-index
a € N, we have:

o (0A) = 3 (g) (9%0) (9°°A) .

0<p<a
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4.4 Support of a distribution

Definition 4.4.1 (Extension operator). If w is an open subset of 2, we consider:
Ext, : 0 € D(w) — 01, € D(9).

We have: ¥Vf € Ly, (), Ext}, Ay = Ay . Hence, Ext], will be called restriction to w and we will

loc

write Ay, instead of Ext;, A.

Vocabulary 4.4.2. A distribution A € D (§2) is said to vanish over an open subset w C € if Ay, =0,
i.€.
Vo e D(Q), Suppp € w = (A, p) = 0.

Lemma 4.4.3. Let T" be a collection of open subsets of Q; consider U = Jyerw. Let A € D' (Q) s.t.
Vwel, A, =0. Then Ay = 0.

Proof. Let ¢ € D () s.t. Suppy € U. Since Supp ¢ is compact, there exists a finite subset J C T
s.t. Supp ¢ € Uyesw. Now, consider a partition of unity (6,),,cy subordinated to J (c.f. Proposition
4.1.6). For n € N, there exists w,, € J s.t. Supp¥,, € w,. Therefore:

(A ) = <A7 5 engo> S A = 3 (A ) = 0.

neN neN neN

Definition 4.4.4 (Support of a distribution). Let A € D' (). We define the support of A by:

SuppA=Q\ | w.

w open in 2
f\wzo

Supp A is a closed subset of §2. Moreover, by Lemma 4.4.3, Ao\ suppa = 0.

Definition 4.4.5 (Compactly supported distribution). A distribution A € D' () is said to be com-
pactly supported if Supp A is compact. We write E' () for the space of compactly supported distri-
butions over 2.

Theorem 4.4.6. If A € &' () is a compactly supported distribution, then:

AK€, IN €N, IC € Ry, Vo € D(Q), [{A, )| < C max [[0%]le .
aE

la]<N
In particular, A has finite order (because ||||o}§> < ||H?20)

Proof. Choose € > 0 s.t. SuppA + B(0,e) € Q. There exists ¥ € D(Q) s.t. 0 < ¥ < 1 and

‘Ij|SuppA+§(O,a) = 1. Let K = Supp¥ € Q. Since Ajp, (o) is continuous, there exist C' € Ry and

N € N s.t.
V0 € D(Q), Suppf € K = [(A,0)] < C' max [|0°0]| -
i
Now, if ¢ € D(Q), write ¢ = ¥y + (1 —¥)p. Note that Supp ((1—V¥)¢) C Supp (1 —¥) C
Q\ Supp A so (A, (1 — W) ¢) = 0. Thus:

(A, @) = [(A, T)| < C max [0 (V)| o < C max [[0%p]|ec .
a€eN aeN
la|<N lo|<N
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Corollary 4.4.7. A compactly supported distribution A € ' () induces a unique continuous linear
form over C* () (where the topology of C* () is given by the family (HHNK) nen Of semi-norms
KeQ

defined by |||y = max aee |0%¢lls0).

lo|<N
Proof. Note that D (2) is dense in C* (€2), and that elements of £ (€2) are C* (£2)-continuous over
the dense subspace D (€2). O
Remark 4.4.8. Conversely, if A € C* (Q)", then Apy € D' ().
Notation 4.4.9. We shall write £ (Q2) = C*(Q). This notation is coherent with the fact that
EQ)=£E(Q)".
Proposition 4.4.10. Fiz a € Q and write 6, € €' () for the Dirac mass at a. If A € D' (Q) is s.t.
Supp A C {a}, then A € Vect (aaéa, a € Nd).

Proof. By a standard algebraic argument, it is enough to prove the existence of N € N s.t.

KerA D ﬂ Ker 0%,

aeNd
la|<N

Let ¥ € D (Rd) st. 0 < ¥ <1and,,, =1 DefineV,:z¢€ R? — W (n(z — a)). Now consider
a closed ball B @ Q centred at a. We have Supp ¥,, = a + % Supp ¥ C B for n larger than or equal

to some ng € N*. By continuity of A, there exist C' € R,, N € N s.t.
V8 € D(Q), Suppf C B = |(A,0)| < C max [|0%0]| ;o -
aEeN

la|<N
If ¢ € D(Q), then Supp (¥,.) C Supp ¥,, C B for n > ngy. Therefore:

Y € D(Q), ¥n 2 no, [(A, Tup)| < C max [|0% (Vrp)|| -
Jal<N

Now, let ¢ € Noene Ker0%d,, ie. |a] < N = 0%(a) = 0. By Taylor’s formula, 0%p(z) =
lal<N

O, (]x — a|N+1_a) if |a| < N. By Leibniz’s formula, we obtain [0% (¥,¢) (z)| < C'nl*=N=1 for some
C’" € Ry. Therefore, there is a constant C” € Ry s.t. [(A, U,p)| < € for all n > ng. Now, for
n > ng, Supp (¢ — Upp) NSupp A = @, so [(A, )| = [(A, ,0)| < &=, By making n — +00, we
obtain (A, ) =0, i.e. ¢ € Ker A as wanted. O

4.5 Assembling distributions

Proposition 4.5.1. Let Q,,Qy be two open subsets of RY. Let Ay € D' (), Ay € D' () and
assume that:

Al‘leQQ - AQ‘QlﬁQQ .
Then there exists a unique distribution A € D' (Q; U) s.t. Ao, = Ay and Ajg, = As.

Proof. Uniqueness. Assume that A exists. Let ¢ € D (27 Uy). Note that there exist WUy, ¥y €
D (2 U ) s.t. Supp ¥y € Qy, Supp Vs € Q2 and ¥y + Wy = 1 on Supp ¢. Therefore:

(A, ) = (A (W1 + W) ) = (A1, Uig) + (Mg, W) . (*)

This proves the uniqueness. Existence. Let us prove that the right-hand side of (%) does not depend
on the choice of (Vy, ¥y). Let (W), U}) be another pair satisfying the same conditions. Then:

(A1, W) + (Ao, Uh)) — ((Ay, U10) + (A, Wa)) = (Ay, (U] — Wy) ) — (Ao, (U — W) ).
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Now, consider 6 = (V) —W;)p = (Vy — ¥))p. We have Suppf C 2 N Qy. Since Ajjg,nq, =
Agjq,nq, , this gives (A1,0) = (Ag,0), therefore (A1, Wip) 4 (Ag, W) = (A1, W) + (Ag, Uap) as
wanted. Hence, we can define a linear form A using (x) as wanted. Let us check that A is continuous.
Let K € 91UQ2. There exist \I’l, Uy €D (Ql U Qg) s.t. Supp U, € Ql, Supp Uy E Qg and U +W, =1
on K. For any ¢ € D (Q; U Q) with Suppp C K, we have (A, p) = (A1, V1) + (A2, Uap). Hence,
we easily obtain the continuity of A from that of A; and Ay. Now, let us check that Ajg, = A;.
Let ¢ € D (9 UQy) with Suppp C ;. If Uy, U, are chosen as in the construction of A, we have
Supp (Vo) C Q21 N Qy, s0 (A, ) = (A1, V1) + (A, Uap) = (A1, ), which proves that Ao, = Ay.
Likewise, Ajg, = As. O

5 Convolution of distributions

5.1 Generalities
Lemma 5.1.1. IfT € & (]Rd) and ¢ € D (Rd>, then ¢ :y € RE—— (T, ¢ (- +v)) is an element of
D (RY).

Proof. We easily prove that Suppy¥ C Suppy — Supp[’, so ¢ is compactly supported. For the
continuity of v, we prove that, for all y € R |oh(y +h) —(y)] = Oy(h), so ¢ is continuous.
Likewise, for j € {1,...,d}, we have ’L/)(y +h) —(y) — <F, g—; (- + y)>’ = Oy (h?). By induction, ¢
is C*, and:
Va € N% Wy e RY, 0% (y) = (T,0% (- +y)) .
]

Remark 5.1.2. With the notations above, one can also show that if I' is a (not necessarily compactly
supported) distribution, then 1 is an element of C*® (Rd).

Definition 5.1.3 (Convolution). Let A, € D’ (Rd>. Assume that A or I' is compactly supported.

Then we can define a linear map AT : D (Rd) — K as follows. For any test function ¢ € D (Rd),
seth:y € RT— (T, (- +v)) and define:

(AT, ) = (A 9) .
Then A x T s a distribution.

Proposition 5.1.4. If f,g € L' (]Rd) s.t. f or g is compactly supported, then Ay x Ay = Ayyg.
Proposition 5.1.5. Let g € &£’ (Rd> be the Dirac mass at 0. Then:
VA €D (RY), Gy« A=A=Axd.

0o 18 the unit of the convolution product.

Remark 5.1.6. If A,T € & (Rd), then A« T € & (Rd) and Supp (A *T) C SuppA + SuppT.
Therefore, &' (Rd) is an algebra for =, and D’ (Rd) is an &' (Rd) -module.

Proposition 5.1.7. If A, T € D’ (Rd) s.t. A or T is compactly supported, then:
Va € N4 9% (AT) = (0°A) xT' = A% (9°T).
In particular, the maps 0% : D’ (Rd) — D’ (Rd> are &' (Rd) -linear.
Proposition 5.1.8. IfI';,I'; € & (Rd) and A € D’ (Rd>, then (AxT1) x Ty =A% (1 xTy).
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5.2 Applications to partial differential equations

Vocabulary 5.2.1 (Linear PDE with constant coefficient). A linear partial differential equation
(PDE) with constant coefficients is an equation of the form:

Lu=T,

where I' € D' () is a given distribution and L is of the form L = 3, <y a0, with N € N and
(Ca) qenvt € RY.

Definition 5.2.2 (Fundamental solution). A distribution v € D’ (Rd) is said to be a fundamental
solution for L if:
Lv = 50,

where &g is the Dirac mass at 0.

Proposition 5.2.3. Ifv € D’ (Rd) is a fundamental solution for L, then for any I' € &' (Rd), the
distribution (v I') satisfies L (v« I') =T.

Example 5.2.4.

(i) Ifd=1 and L = %, then Heaviside’s function 1g, is a fundamental solution for L.

(i) Ifd>2and L =A =%, %, we have a fundamental solution E € Li (]Rd) for L given by:

loc
_1 ; —
B(z) = 27; In |z| - zfd 2’

where Vy is the volume of the unit ball of R?. Therefore, if f is a compactly supported C?
function, then (E x f) is also C%, so (E * f) is a solution of Au = f in the ordinary sense.

5.3 The Schwartz class

Definition 5.3.1 (Schwartz class). A function f € C* (Rd,K) is said to have rapid decay if one
the three following equivalent conditions is satisfied:

(i) V(o,B) € (Nd)z, SUD,cpd :co‘aﬂf(x)’ < +00.
(i) V(a,B) € (Nd)2, limyy) 4 o0 2°0% f () = 0.
(ii}) V(o 8) € (V)" o

The Schwartz class if the space S (Rd) of C* fucntions with rapid decay. S (Rd) is equipped with
the countable family (||| y) yen of semi-norms defined by:

xaaﬁf(x)‘ dz < +oo0.

1£lly = sup sup (1+ [z[)" |0 f(x)].
|a|<N zeR?

Proposition 5.3.2. S (]Rd) is a Fréchet space.

Proof. It suffices to prove that S (Rd> is complete, which comes from the fact that the space of

continuous functions which converge to 0 at oo is complete, equipped with |||, and from the fact
that if a sequence of functions is such that the derivatives of the functions all converge, then one can
compute the derivatives of the limit of the sequence. O
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Vocabulary 5.3.3 (Slow growth). A function f € C* (Rd,K) is said to have slow growth if every
derivative of f grows at most polynomially.

Proposition 5.3.4. Let f € S (Rd>.
(i) If a € N¢ then 0°f € S (Rd).

(i) IfgeC> (Rd,K> has slow growth, then gf € S (Rd).
Moreover, these operators f +— 0%f and f v+ gf are linear continuous.

Proposition 5.3.5. We have the (continuous) inclusions:
D (RY) C S (R?) C £ (RY).
Moreover, D (Rd) is dense in S (Rd).
Proof. Choose a function ¢ € D (Rd) st. 0<¢Y<landy =1on B = {:(: e R4, |z] < 1}. For

n € N*, define ¢, (z) = ¢ (%), hence ¢, =1 on B,. If p € S (Rd), show that 1,0 — ¢ in S (]Rd>,
and 9, € D (Rd>. O

5.4 The Fourier transform
Definition 5.4.1 (Fourier transform in L'). If f € L' (Rd>, then the Fourier transform of f is
defined by:

1

FIE) = G /@) b

F is a continuous linear operator from L1 (Rd) to the space of continuous functions on R% which
converge to 0 at oco.

Proposition 5.4.2.
(i) Let fecCN (]Rd) s.t. V]| < N, 0°f € L (Rd). Then, for |a| < N:

F(0°F) (&) =i Ff(9).
(i) Let f € L' (R?) s.t. Y]a| < N, 2°f € L' (RY). Then Ff € CV (R?) and, for |a| < N:
0" (FF) (&) = (1) F (=) (&).
(iii) If f,g € L' (R?), then (f * g) € L' (R?) and:
F(fxg)=@0)" (F)(Fg).
(iv) Let f € L' (R?) s.t. Ff € L' (RY). Then:
[=FF],
where F is defined by Fg(x) = Flx) = 5 Jes ™ 9(€) dé.

(v) L' (RY) N 27 (RY) ds dense in L (RY), and Fy:(a)ors
extended uniquely to a linear isometry F : L? (Rd> — L7 (Rd>’ which satisfies F1 = F.

(Ra) s a linear isometry, so F can be

Proposition 5.4.3. The Schwartz class S (Rd) is stable under the Fourier transform, and the op-
erator F : S (]Rd> - S (Rd) s an isomorphism.
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5.5 Tempered distributions

Definition 5.5.1 (Tempered distributions). The dual space S’ (]Rd) =8 (Rd)* is called the space of
tempered distributions.

Proposition 5.5.2. Since D (Rd) CcS (Rd> cé& (Rd), we have:
£ (RY) c s (RY) D (RY).
Proposition 5.5.3. Let A € D (]Rd>. Then A is tempered (i.e. A can be extended to a continous
linear form S (Rd> — K) iff:
N €N, 3C € Ry, Vp € D (Rd) , Ao < Cllelly

where ||-||y was defined in Definition 5.3.1.

Definition 5.5.4 (Differentiation and multiplication by a function with slow growth). Let A €
S’ (Rd) and ¢ € S (Rd>.

(i) If « € N4, then O“A is defined by:
(0N, p) = (=Dl (A, %)
(ii) If g e C™ (Rd,K> has slow growth, then g\ is defined by:
{gh, @) = (A, g¢) -

Hence, we define operators S’ (Rd> — &' (Rd>.

5.6 Fourier transform of tempered distributions

Definition 5.6.1 (Fourier transform of a tempered distribution). If A € &' (Rd), then FA is the
tempered distribution defined by:
(FA ) = (A, Fo),

forpe S (Rd>. In other words, F : S’ (Rd) - &' (]Rd) is the adjoint operator of the isomorphism
F:S (]Rd) -8 (]Rd) ; it is also an isomorphism and its inverse is F : S’ (Rd) - & (Rd).

Proposition 5.6.2. Let f € L! (Rd>. Then Ay € 8’ (Rd>, and:
FA; = Asy.

Proof. This comes from the fact that if f,g € L! (Rd), then:

L FN©-9() d= [ 1) (Fo) (&) da.
O

Example 5.6.3. Let w € R? and consider f, : v € R — e, Since f, is C* and bounded, it
defines a tempered distribution (even though f is neither L' nor L?). And we have:

Fflo=(2m)Y?4,.
Proposition 5.6.4. Let o, 3 € N?. For any A € S’ (Rd>, we have:
F (270°A) = il?HH1198 (22 FA).
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5.7 Fourier transform of compactly supported distributions

Theorem 5.7.1. Let A € S (Rd) and M € &' (Rd> cS (Rd).
(i) FM is a C* function with slow growth.
(i) AxMeS (RY).
(iii) F(A* M) = (2m)¥2FM - FA.
Proof. (i) For x € R?, define z, : £ € R? — (27)"%2 exp (—ix - £), and set:
frreR— (M, z,),

which is meaningful because z, € £ (Rd) and M € &' (]Rd). Show that f is C*° with slow growth.
Now, for p € § (Rd), write:
80(5)—(27T)(1/2/Rd€ () x—mg_}%dze So(x),

r€eZ

and use this to prove that (FM, ¢) = (f, ¢). Therefore, FM = f. (ii) Use Proposition 5.5.3, as well
as Theorem 4.4.6. (iii) Let ¢ € S (Rd). We have:

(F(Ax M), ) = (Ay),

where ¥(y) = (M, Fo (- +y)). Now, Fp(z +1y) = Fb,(x), where 0,(£) = e=¥*p(€). From this, we
show that:

v(y) = @m)PF (fo) (v),
with f = FM. As a consequence, (F (A * M), @) = (2m)¥2 (fFA, ¢). O

(
Corollary 5.7.2. If My, My € & (Rd) then My x My = My * M;.

6 Sobolev spaces
6.1 Sobolev spaces of integral order
Remark 6.1.1. Let p € [1,+o00]. If f € LP (), then f € Li. () C D' ().

Vocabulary 6.1.2. Let p € [1,4+00]. A distribution A € D' () is said to be in LP (Q) if there exists
o feL”(Q) st A=A

Proposition 6.1.3. Assume that p € |1,+o0]. Then a distribution A € D' (Q) is in L? () iff:
A0y € Ry, Vo e D(Q), [(A, @)| < Ca il o
T
Definition 6.1.4 (W"*P?). Let k € N, p € [1,+oc]. We define:
Wh?(Q) = {u e D' (Q), Va e N, (lo| < k= 0°u e L"(Q))} C L (Q) € D' (Q).
WHP(Q) is a vector space which we equip with the norm |||y, defined by:
1/p
[llyrr = (Z Hao‘UHIEP) :
|la|<k
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Corollary 6.1.5. Assume that p € |1, +00|. Then a distribution A € D' () is in WP (Q) iff:

d
C, € R+, V(Qﬁa)aeNd S D(Q>N < Cy Z ||§0aHLq )

|| <k

(g

o] <k

where % + é =1.
Proposition 6.1.6. Let k € N, p € [1, +0o0].
(i) WkP(Q) is a Banach space.
(ii) If p < +oo, then WP (Q) is separable.
(iii) If 1 < p < +oo, then WkP (Q) is reflexive.
(iv) If p=2, then W*P (Q) is a Hilbert space.

Proof. Define I}, = {a e N |a] < k‘} and consider:

WHEP(Q) — LP (I} x Q)

jw s (")

acly

J is a linear isometric embedding, and L? (I}, x Q) is a Banach space. Therefore, W*? (Q) is isometric
to Im J. Hence, for (i), (ii) and (iii), it suffices to show that Im 7 is closed in L” (I, x ). To prove
it, consider (uy),oy € WP N st. Jup — g = (90)aer, € LP (I x Q). Set u = go. We have

Uy, = U, SO Uy, L By continuity of 0%, we obtain 0%u,, DL 9o for all € I.. But since 0%u,, = Jas
we also have 9%, 2 g,, which yields g, = 9°u, and ¢ = Ju € Im J. For (iv), simply notice that

|20 = (u,w),, where:
(w,v)p = > / 0%u(x)0°v(z) dz.

la|<k

Proposition 6.1.7. Assume that u € W*? (Q) is compactly supported in 2. Define:

U:reR—s u(x) if v el )
0 otherwise

Then @ € W (R?) and |[it]|yip = ||ull -

Remark 6.1.8. In Proposition 6.1.7, it is crucial to assume that u has compact support. For
instance, take u =1 on Q =10,1[ C R. Then u € W*?(Q) for all k,p. However, u = 1y, so
L84 =60— 6 & LP(R) for all p.

6.2 Approximation by smooth functions

Lemma 6.2.1. Assume that p € [1,+o00[. Let p € D (Rd) s.t. Jgap =1 and p > 0. Set p,(z) =
nip(nx). Then, for every element u € WHP (Rd), we have:

(i) Vn €N, p,xu € C® (RY) N Wk (RY).
(ii)) Vn € N, Supp (p, *u) C Suppu + % Supp p.

(i) flon * t — ullyu, = 0.
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In particular, C® (Rd) N Wk» (Rd> is dense in WHP (Rd).

Proof. Note that D (Rd) * [P (Rd> CC> (Rd> NLP (Rd>. Using the fact that 0% (p, * u) = p,*(0%u)
for |a| < k, we obtain p, x u € C> (Rd> * Wk (Rd) and [|0% (pn * w)|lyee < |0%U|lyyep; therefore
10 * ullyew < ||ullypen. Moreover, it is clear that Supp (p, * u) C Suppu + + Supp p. Finally, write:

O (pu ) () = u(@) = [ puly) (0"ulx = y) = 9*u(x) dy.
and use this to show that ||0% (p,, * u) — 0%u||;, — 0. O

Theorem 6.2.2. Assume that p € [1,+00[. Then C* (2) N WHP (Q) is dense in W*P ().

Proof. Choose a locally finite covering of {2 : ©Q = J;cywj, with @; @ Q. Now, choose a partition of
unity (¥;), .y € D ()" s.t. Supp¥; C w;, ¥; > 0 and Yjen VU = 1. For u € Wk? (Q), set u; = W,u
for all j € N and extend u; by 0 to a function u; € W*? (]Rd), as in Proposition 6.1.7. Use Lemma
6.2.1 to find v; € C* (Rd) N Wk (Rd) with:

Jv; = Ui llypwn < 277,

and Suppv; C w;. Now, set v = ¥ ;envjq € €™ (€2); check that v € WHP(Q) and [|v — ul|jyu, <
2e. O]

Remark 6.2.3. Using Theorem 6.2.2, in the case where p € [1,+00|, we may define W*P (Q) as the
completion of the space X*? (Q) = {u € C*(Q), |Jullyr, < +00} for |||l yyes-

Proposition 6.2.4. If p € [1,+oc], then D (Rd> is dense in WkP (]Rd).

Proof. Prove that W» (Rd) ne' (Rd> is dense in W (Rd) (by using a function ¢ € D (Rd> s.t.
Yp=1on By = {x eRY, ||z]| < 1} and by considering ¢, (x) = v (%)) and apply Lemma 6.2.1. [

Definition 6.2.5 (Wg*). For k € N and p € [1,+0c], define Wy (Q) to be the closure of D (Q) in
WP (Q).

Corollary 6.2.6. If p € [1,+00[ and Q = R?, then Wi (]Rd) = Whe (Rd).

6.3 Extension by zero

Notation 6.3.1. If u is a function defined (a.e.) on ), and Qy 2 Q, we set:

u(z) ifxr e

0 otherwise

ﬂ:meﬂlr—>{

Proposition 6.3.2. Let Q C Q, be open subsets of RY. If u € WP (), then i € WP ().

Proof. Note that there exists a sequence (¢,,),, oy € D ()" s.t. [|on — ullyyrr — 0. Now, @, € D (Q))
and since || — @nllyrs = [0m — Onllwess (Pn)pen is Cauchy, so it converges to a limit v € Wke (Q).
Show that v = @ in D' () by computing (v, 6) for § € D (Qy); hence & € W™ (). O

Notation 6.3.3. Write RL = R™! x ]0, 40| and RY = R*™ x |—o00,0[.
Proposition 6.3.4. Assume that p € [1,+oo[. Let u € Wh? (Ri). Then:
i€ Wh (RY) = u e Wy (RY) .
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Proof. It suffices to prove (=). Therefore, suppose that u € W*? (Rd). For € > 0, define u.(z) =

 (x — eeq), where ey is the d-th vector in the canonical basis of R?. We have Supp u. € R4 x [e, +-00]

and |u. — @l|,yx, — 0. Because the subspace W™ (Ri) is closed, it suffices to prove that Us|ps €
+

W(f” P (Ri). From now on, ¢ is fixed. Approximate u. by functions in ¢, € D (Rd), choose a function
6 € C®(R)st. Or. =0 and O 4o = 1 and consider v, (z1,...,2q) = 0 (xq) n (T1,...,2q); show

that H(wn - ug)“w+ — — 0. O

6.4 Existence of a right inverse of the restriction operator

Remark 6.4.1. A natural question is to find an operator P : WFP (Q) — WHhP (]Rd) that is linear

and continuous and s.t. Ro P = idyky(q), where R :u € Wk (Rd) — u € WHP(Q). If k=0, it
suffices to take the extension by 0.

Theorem 6.4.2. Assume that p € [1,400[ and Q = R%L. Then there exists an extension operator
P Wke (Ri) — Whe (Rd) that is a right inverse of the restriction operator.

Proof. For u € Wh» (]R;r), define:

w(xy, ..., xq) ifzg >0
S aju(ay, ... wao1, —jag) if g <0

Pu(xq,...,2q4) = {

where aq, ..., a1 are determined by the following Vandermonde linear system:

k+1

vm € {0,...,k}, Z:(—j) a; =

It is clear that P is a linear map satisfying Ro P = idwkyp(Rd); it remains to show that Im P C
+

Wkop (]Ri) and that P is continuous. ]

Theorem 6.4.3. Assume that p € [1,+oo| and let Q be a bounded domain with a C* boundary. Then

there exists an extension operator P : WP (Q) — WP (]Rd) that is a right inverse of the restriction
operator.

6.5 Embeddings of distribution spaces

Definition 6.5.1 (Distribution space). A distribution space is a Banach space E that is included in
D' (Q) s.t. for all o € D (), the map u € E — (u,p) € K is continuous.

Remark 6.5.2. If F' is a distribution space and E is a closed subspace of F' s.t. the inclusion E C F
is continuous, then E is also a distribution space.

Example 6.5.3.
(i) LP () is a distribution space for p € [1,400].
(ii) WHP (Q) is a distribution space for p € [1,+oc].

(iii) ( ) N L>® (7) is a distribution space, equipped with ||-|| ;-

(ﬁ) {u eC’ (ﬁ) N L> (ﬁ) , SUDP, 4, % < —i—oo} is a distribution space for a €
1],

]

equipped with ||-||c. defined by:

I£ler = 151 +sup LE=I,
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Lemma 6.5.4. Let E and F be two distribution spaces over €2 and assume that EE C F. Then the
inclusion £ C F' is continuous.

Proof. Consider X = {(u,u), u € E} C E x F'; X is the graph of the inclusion map E C F. By the
Closed Graph Theorem (Theorem 1.2.9), it suffices to prove that X is a closed subspace of E x F.
Hence, let (u,),.y € EN st (up,un) = (w,v) in E x F. Then u, = u in E, so u, — u in D'\
Likewise, u, — v in D, so u = v and (u,v) € X. O

Lemma 6.5.5. Let E and F be two distribution spaces over 2 and let D be a dense subspace of E
s.t. D C F. Assume that there exists C € R s.t.

Vu e D, |lul|lp <Clulg.
Then E C F, with a continuous inclusion.

Proof. Let u € E. Then there exists (u,),.y € DV s.t. w, — win E. The sequence (u,), oy is
Cauchy in F, and therefore in F' because [ju, — uq||, < C'||lu, — ugl|, for all p,q € N. Since F is

a Banach space, there exists v € F s.t. u, — v in F. Now, u, — u in D' and u, = v in D’ so
u=v € F. Moreover, |[ullz = lim,_, 4o ||t p < Clim, o0 ||l 5 = [Jull - O

6.6 Sobolev embeddings

Theorem 6.6.1 (Morrey’s Theorem). Let 2 be either RY, RL or a bounded domain with a C'
boundary. Assume that d < p < +o0o. Then:

Wi () e (Q),
. _ d
with a =1—2€10,1[.

Proof. We only prove the case where Q = R? (for the other cases, use the extension operators
given by Theorems 6.4.2 and 6.4.3). Let E = WP (Rd), F=Ce (Rd) and D = D (]Rd) CENF.
According to Proposition 6.2.4, D is dense in E. Therefore, by Lemma 6.5.5, it suffices to prove the
existence of a constant C' € Ry s.t. Yu € D, ||ul|za < C'Jullyy1,. To do this, show firstly that if B,
is any (closed) ball of radius 7 containing a point x € R, then:

1 / 2 Lo
u(r) — ——— u(y dyﬁ(/t“’dt) Vull;, r*.
)= 555 o, 10 9| < 5 (] vl
C1
Hence, if z,y € R? and if r = % |z — z|, by choosing B, to be the ball with centre mzﬂ and with

radius r, we obtain:
u(@) —u(2)] < 2'7°C1 [Vl v — 2|

Next, we need to show that u is bounded. To do this, note that, if B; is any (closed) ball of radius

1, then:
1 1

——— [ u(y) dy| < ——— |lull» -
\A 57 s, y' < s Il
Using this and the previous inequalities, we obtain an upper bound for ||u||;«, and then for ||u||,.. O

Theorem 6.6.2 (Gagliardo-Nirenberg Theorem). Let Q2 be either R?, RY or a bounded domain with
a Ct boundary. Assume that 1 < p < d. Then:

Whe(Q) € L7 (Q),

1

where ria

=
Ul
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Proof. The strategy is exactly the same as for Morrey’s Theorem (Theorem 6.6.1): we assume that
Q = R? and we work with functions in D (Rd). Firstly, assume that p = 1. In this case, prove that,

for any compactly supported C' function u, we have [Jul ;41 < ||ullyyr1. For the general case, fix

s = pg’f_g) > 1, so that p* = 2. Note that ¢ — [¢|* is a C' function. Thus, |u|” is a compactly
supported C! function. Apply the previous case and obtain the desired inequality. O]

Corollary 6.6.3. Let Q be either R?, R% or a bounded domain with a C' boundary. Assume that
1 <p<d. Then:
vr €[], W (9) C L7 (@),

where £ =
p

Ul

1
P

6.7 Compact embeddings

Definition 6.7.1 (Compact embedding). Let E and F be two distribution spaces s.t. E C F.
We say the the embedding E C F is compact if the unit ball Bg of E is relatively compact in F.
Equivalently, from every sequence (uy), oy € EY that is bounded in E, we can extract a subsequence
which converges in F.

Remark 6.7.2. If E is of infinite dimension, then the embedding E C E is never compact.
Theorem 6.7.3. Let Q be a bounded domain in R? with a C* boundary.

(i) Ifp>dand0< g <1— %, then the embedding WP (Q) C C? (ﬁ) (given by Theorem 6.6.1)
18 compact.

(ii) If p < d and 1 < r < p*, then the embedding WP () C L" (Q) (given by Corollary 6.6.3) is

compact.

6.8 Sobolev spaces of fractional order

Lemma 6.8.1. Let k € N. Then:
wh (RY) = {ue s’ (RY), ((1+168)" Fu) e 12 (RT)}.

In addition, ||-||yx2 is equivalent to the norm ||| defined by:

k/2

Jull = |1+ 16)" 7

LQ

Definition 6.8.2 (H* (Rd>). For s € R, define:

1o (RY) = {ues (RY), ((1+16P)" Fu) e 12 (RY)}.

H? (Rd> can also be denoted by W*? (]Rd). We equip it with the scalar product ((-,-)) . defined by:

(w0 = [, (1+16P) Ful@)Fo(e) de,

(in the case where K = R, we have to take the real part because the Fourier transform is not necessarily
real-valued). Thus, H* (Rd) is a Hilbert space.

Proposition 6.8.3.

(i) For k € N, the new definition of H* (Rd) = Wk? (]Rd) agrees with the original one.
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(ii) If s <o, then H* (R?) 2 H” (R?).
(iii) H° (R?) = L? (RY).
C

(iv) If s >0, H® (]Rd) L? (Rd). In particular, the elements of H* (Rd> are functions.
(v) ForseR, D (Rd) is dense in H* (Rd>.
Definition 6.8.4 (H*(2)). If Q is a domain of R? with a C* boundary, we define:
H* (Q) = {um, uwe H (Rd>} :

and we equip this space with the norm |||

s defined by:

[0l e = dnf Aluf|. .
uEH“’Rd)

um =v

Hence, H* () is a Hilbert space.

6.9 Trace theorems

Theorem 6.9.1. Let s € }%,4—00{. Then the linear map u € D(Rd> — Uzy—0y € D (Rd_l)
extends uniquely to a continuous linear operator v : H? (Rd) — H% 3 (Rd_1>. In addition, there
exists a continuous linear operator R : H* 2 (Rd_l) — H* (Rd) s.t. yo R=1id. In particular, - is

surjective (and open).

Proof. For the existence and uniqueness of ~, by density of D (Rd) in H? (Rd), it suffices to prove
the existence of C' € R, s.t.

vueD(Rd),

w3 <Oyl
H”2

Ul{zq4=0} ‘ Hs -

For the existence of R, choose 8 € D (R) s.t. [0 = 1. Now, for g € H*"2 (Rd_l), define:

h:éeRdr—M/Z_-@( & ) L Fee),
TU\Vrvel) e

with € = (¢,&) € R xR, and let Rg = F 'he & (Rd). Check that Rg € H* (Rd) and that the
linear map R : H =3 (Rd_l) — H?® (Rd) thus defined is continuous, then show that yo R =id. [
Remark 6.9.2. In Theorem 6.9.1, the lifting R is not unique.

Corollary 6.9.3. Let s € B, +oo[. Then there exists a continuous linear operator o : H?® (Ri) —

H* 3 (Rd_1> s.t. the following diagram commutes:

Hs (Rd) i) Hs—% (Rdfl)

| <

i (m2)

where v is as in Theorem 6.9.1 and H?® (Rd) — H? (Ri) is the restriction. Moreover, there exists

a continuous linear operator R : H* 3 (Rd_l) — H* (Ri) s.t. oo R =1id. In particular, vy is
surjective (and open).
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