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Notation 0.0.1. Throughout these notes, (Ω,F ,P) will be a probability space.

1 Conditional expectation

1.1 An elementary case
Example 1.1.1.

(i) If A ∈ F , with P(A) > 0, then one can define a new probability measure P (· | A) on (Ω,F)
by P (B | A) = P(B∩A)

P(A) . Now, if X : Ω → R is an integrable or nonnegative random variable,
measurable w.r.t. F , one can consider its integral w.r.t. P (· | A):

E [X | A] =
∫

Ω
X(ω)P (dω | A) = E [X1A]

P(A) .

(ii) Let (Ai)i∈I be a partition of Ω indexed by a countable set I. Let X be an integrable random
variable. By convention, we set E [X | Ai] = 0 if P (Ai) = 0. Now, define:

X ′ =
∑
i∈I

E [X | Ai]1Ai .

We note that (1) X ′ is a random variable, measurable w.r.t. G = σ (Ai, i ∈ I), and (2) for
all B ∈ G, E [X ′1B] = E [X1B]. Properties (1) and (2) will be the fundamental properties of
conditional expectation.

1.2 The general case
Theorem 1.2.1 (Kolmogorov’s Theorem). Let G ⊆ F be a sub-σ-algebra of F . Let X : Ω → R be
an integrable random variable. Then there exists a random variable X ′, integrable and s.t.

(i) X ′ is G-measurable.

(ii) ∀B ∈ G, E [X1B] = E [X ′1B].

The random variable X ′ is unique up to almost sure equality; its equivalence class will be called the
expectation of X given G and denoted by E [X | G]. It is an element of L1 (Ω,G,P).

Proof. Uniqueness. Let X ′ and X ′′ be two integrable random variables satisfying (i) and (ii).
Consider B = (X ′ > X ′′) ∈ G. We have X ′1B ≥ X ′′1B; therefore:

E [X ′′1B] ≤ E [X ′1B] = E [X1B] = E [X ′′1B] .

Hence, equality must hold throughout, which implies thatX ′1B = X ′′1B almost surely, i.e. P(B) = 0.
Thus, X ′ ≤ X ′′ a.s., and by symmetry, X ′ ≥ X ′′ a.s., so X ′ = X ′′ a.s. Existence. First step: we
assume that X ∈ L2 (Ω,F ,P). Note that L2 (Ω,F ,P) is a Hilbert space, and L2 (Ω,G,P) is a closed
subspace, so there exists a unique orthogonal projection π : L2 (Ω,F ,P) → L2 (Ω,G,P), and π is
characterised by:

∀Z ∈ L2 (Ω,G,P) , 〈X − π(X) | Z〉 = 0,

or in other words: ∀Z ∈ L2 (Ω,G,P) , E [XZ] = E [π(X)Z]. In particular, π(X) satisfies (i) and (ii),
which proves the theorem in the special case where X is in L2. Second step: note that E [· | G] :
L2 (Ω,F ,P) → L2 (Ω,G,P) is a positive linear map. Linearity is clear (it is a projection). For
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positivity, take X ∈ L2 (Ω,F ,P) s.t. X ≥ 0 a.s. and consider the event B = (E [X | G] < 0) ∈ G.
We have E [X | G]1B ≤ 0, therefore:

0 ≤ E [X1B] = E [E [X | G]1B] ≤ 0.

Hence, equality holds throughout and P(B) = 0. Third step: we assume that X is a nonnegative ran-
dom variable, measurable w.r.t. F (but not necessarily integrable). For n ∈ N, the random variable
X ∧n = min(X,n) is bounded, so it is in L2 and has a conditional expectation given G (according to
the first step). Since X ∧n ≤ X ∧ (n+ 1) for all n ∈ N, and E [· | G] is positive linear on L2 (accord-
ing to the second step), we have E [X ∧ n | G] ≤ E [X ∧ (n+ 1) | G] for all n ∈ N. Therefore, there
exists a G-measurable random variable X ′ with values in [0,+∞] s.t. E [X ∧ n | G] −−−−→

n→+∞
X ′ a.s.

But by monotone convergence, for all B ∈ G, E [(X ∧ n)1B] −−−−→
n→+∞

E [X1B] and E [(X ∧ n)1B] =
E [E [X ∧ n | G]1B] −−−−→

n→+∞
E [X ′1B]. This proves that ∀B ∈ G, E [X1B] = E [X ′1B]. Moreover, note

that if X is integrable, then so is X ′ because E [X ′] = E [X ′1Ω] = E [X1Ω] < +∞. This proves the
result in the special case where X is nonnegative. Fourth step: we assume that X is any integrable
random variable in L1 (Ω,F ,P). We write X = X+ −X−, with X+ = X ∨ 0 and X− = (−X) ∨ 0,
and apply the third step to X+ and X−.

Remark 1.2.2.

(i) One could also prove Kolmogorov’s Theorem by applying the Radon-Nikodym Theorem and
setting X ′ = (X·dP)|G

dP|G
.

(ii) Note that, by a standard approximation argument, one could replace property (ii) in the theorem
by E [XZ] = E [X ′Z] for every bounded and G-measurable random variable Z.

(iii) In the course of the proof, we have also showed the existence of E [X | G] if X is any random
variable with values in [0,+∞]. It is actually possible to adapt the proof of the uniqueness to
this setting.

1.3 Elementary properties of conditional expectation
Proposition 1.3.1. Let X, Y ∈ L1 (Ω,F ,P) and consider a sub-σ-algebra G of F .

(i) E [E [X | G]] = E [X].

(ii) If X is G-measurable, then E [X | G] = X a.s.

(iii) If X is independent of G, then E [X | G] = E [X] a.s.

(iv) If a, b ∈ R, then E [aX + bY | G] = aE [X | G] + bE [Y | G] a.s.

(v) If X ≥ 0 a.s., then E [X | G] ≥ 0 a.s.

(vi) |E [X | G]| ≤ E [|X| | G] a.s., and in particular E [|E [X | G]|] ≤ E [|X|].

Proposition 1.3.2 (Conditioned basic integration theorems). Let (Xn)n∈N ∈ L1 (Ω,F ,P)N and
X ∈ L1 (Ω,F ,P).

(i) Monotone Convergence. Assume that ∀n ∈ N, Xn ≥ 0 a.s., and that (Xn)n∈N is a.s. nonde-
creasing and that Xn −−−−→

n→+∞
X a.s. Then E [Xn | G] −−−−→

n→+∞
E [X | G] a.s.

(ii) Fatou’s Lemma. Assume that ∀n ∈ N, Xn ≥ 0 a.s. Then:

E
[
lim inf
n→+∞

Xn | G
]
≤ lim inf

n→+∞
E [Xn | G] a.s.
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(iii) Dominated Convergence. If Xn −−−−→
n→+∞

X a.s. and if there exists an integrable random variable
ϕ s.t. ∀n ∈ N, |Xn| ≤ ϕ a.s., then E [Xn | G] −−−−→

n→+∞
E [X | G] a.s.

(iv) Jensen’s Inequality. If ϕ : R → ]−∞,+∞] is a convex function and if ϕ(X) is integrable or
nonnegative, then:

E [ϕ(X) | G] ≥ ϕ (E [X | G]) a.s.

(v) For all p ∈ [1,+∞], ‖E [X | G]‖p ≤ ‖X‖p, so E [· | G] : Lp (Ω,F ,P)→ Lp (Ω,G,P) is a contin-
uous projection.

1.4 Specific properties of conditional expectation
Proposition 1.4.1. Let X ∈ L1 (Ω,F ,P). If Y ∈ L1 (Ω,F ,P) is bounded and G-measurable, then:

E [XY | G] = Y E [X | G] .

Proposition 1.4.2. Let X be an integrable or nonnegative random variable. Consider H ⊆ G ⊆ F
sub-σ-algebras of F . We have:

E [E [X | G] | H] = E [X | H] = E [E [X | H] | G]

Notation 1.4.3. If (Gi)i∈I is a family of sub-σ-algebras of F , we shall denote by ∨i∈I Gi the σ-algebra
generated by ⋃i∈I Gi.
Proposition 1.4.4. Let X be an integrable or nonnegative random variable. Consider sub-σ-algebras
G and H of F and assume that H is independent of σ(X) ∨ G. Then:

E [X | G ∨ H] = E [X | G] .

Proof. Let (A,B) ∈ G ×H. Since 1A∩B is (G ∨ H)-measurable, we have:

E [E [X | G ∨ H]1A∩B] = E [X1A∩B] = E [(X1A)1B] = E [X1A]E [1B] = E [E [X | G]1A]E [1B]
= E [E [X | G]1A1B] = E [E [X | G]1A∩B] .

But note that {A ∩B, (A,B) ∈ G ×H} is stable under finite intersections and generates G ∨H. By
the Monotone Class Theorem, we have ∀C ∈ G∨H, E [E [X | G ∨ H]1C ] = E [E [X | G]1C ], therefore
E [X | G ∨ H] = E [X | G].

Notation 1.4.5. If X and Y are two random variables s.t. X is integrable or nonnegative, we shall
write E [X | Y ] = E [X | σ(Y )].

Proposition 1.4.6. Let X and Y be random variables taking values in measurables spaces (E, E) and
(E ′, E ′) respectively. Assume that X and Y are independent and consider a function f : E×E ′ → R+
that is measurable w.r.t. E ⊗ E ′. Then:

E [f(X, Y ) | Y ] =
∫
E
f(x, Y )P (X ∈ dx) .

Note that, according to Fubini’s Theorem, the function y 7→
∫
E f(x, y)P (X ∈ dx) is measurable, so

it makes sense to talk about the random variable
∫
E f(x, Y )P (X ∈ dx).
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1.5 Notion of conditional distribution
Definition 1.5.1 (Conditional distribution). If G is a sub-σ-algebra of F , we define P (A | G) =
E [1A | G] for A ∈ F .

Remark 1.5.2. The latter definition is very dangerous because P (A | G) is a random variable that
is only defined P-almost everywhere. For any fixed family (An)n∈N of pairwise disjoint F-measurable
sets, it will be P-almost surely the case that P (⊔n∈NAn | G) = ∑

n∈N P (An | G). However, this needs
not be true for all choices of (An)n∈N P-almost surely.

Definition 1.5.3 (Kernel). Let (E, E) and (F,F) be measurable spaces. A kernel from E to F is a
function K : E ×F → R+ s.t.

(i) For all A ∈ F , K (·, A) : E → R+ is measurable.

(ii) For all x ∈ E, K (x, ·) : F → R+ is a probability measure.

Definition 1.5.4 (Regular version of a conditional distribution). Let G be a sub-σ-algebra of F .
We say that the kernel Q from (Ω,G) to (Ω,F) is a regular version of P (· | G) if for all A ∈ F ,
Q(ω,A) = P (A | G) (ω) P-almost surely.

Theorem 1.5.5. Let (E, E) be a Borel space (i.e. (E, E) is isomorphic as a measurable space to a
Borel subset of R). If X is a random variable with values in (E, E), then the conditional distribution
of X given G admits a regular version, i.e. there exists a kernel Q from (Ω,F) to (E, E) s.t. for all
A ∈ E, Q(ω,A) = P (X ∈ A | G) (ω) P-almost surely.

Example 1.5.6. Assume that (X, Y ) is a random variable in R2 whose law has a density f w.r.t.
Lebesgue’s Measure:

∀A ∈ Bor
(
R2
)
, P ((X, Y ) ∈ A) =

∫
A
f(x, y) dx dy.

Then Y has a density given by fY (y) =
∫
R f(x, y) dx. Therefore, for all nonnegative measurable

function h, we have:

E [h(X) | Y ] =
∫
R

(
dx · f(x, y)

fY (y)

)
h(x).

Hence the kernel Q(y, A) =
∫
A dx · f(x,y)

fY (y) is a regular version of X given Y .

1.6 The Gaussian case
Example 1.6.1. Let (X, Y ) be a Gaussian vector in R2, i.e. (sX + tY ) has a Gaussian law for all
(s, t) ∈ R2. We assume that E[X] = E[Y ] = 0. Recall that for Gaussian variables, independence is
equivalent to orthogonality. This leads to:

E [X | Y ] = Cov(X, Y )
Var(Y ) Y.

More precisely, the conditional law of X given Y is N
(

Cov(X,Y )
Var(Y ) Y,

Var(X) Var(Y )−Cov(X,Y )2

Var(Y )

)
.

2 Martingales

2.1 Filtrations and martingales
Definition 2.1.1 (Filtration). Given (Ω,F ,P), a filtration is a nondecreasing sequence (Fn)n∈N of
sub-σ-algebras of F :

F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ · · · .
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One should think of Fn as the information available at time n. Given a filtration (Fn)n∈N, the space(
Ω,F , (Fn)n∈N ,P

)
is called a filtered probability space. A sequence (Xn)n∈N of random variables is

said to be adapted to (Fn)n∈N if Xn is Fn-measurable for all n ∈ N.

Example 2.1.2 (Canonical filtration of a sequence of random variables). Let (Xn)n∈N be random
variables on (Ω,F ,P). For n ∈ N, define FXn = σ (X0, . . . , Xn). Then

(
FXn

)
n∈N

is called the
canonical filtration of (Xn)n∈N. The sequence (Xn)n∈N is adapted to

(
FXn

)
n∈N

.

Definition 2.1.3 (Martingale, supermartingale, submartingale). Consider a filtration (Fn)n∈N and
a sequence (Xn)n∈N of integrable random variables.

(i) We say that (Xn)n∈N is a (Fn)n∈N-martingale if ∀n ∈ N, E [Xn+1 | Fn] = Xn. Equivalently,
∀(m,n) ∈ N2, m ≤ n =⇒ E [Xn | Fm] = Xm.

(ii) We say that (Xn)n∈N is a (Fn)n∈N-supermartingale if ∀n ∈ N,E [Xn+1 | Fn] ≤ Xn. Equivalently,
∀(m,n) ∈ N2, m ≤ n =⇒ E [Xn | Fm] ≤ Xm.

(iii) We say that (Xn)n∈N is a (Fn)n∈N-submartingale if ∀n ∈ N, E [Xn+1 | Fn] ≥ Xn. Equivalently,
∀(m,n) ∈ N2, m ≤ n =⇒ E [Xn | Fm] ≥ Xm.

Remark 2.1.4. If (Xn)n∈N is a (Fn)n∈N-martingale (resp. supermartingale, submartingale), then
the sequence (E [Xn])n∈N is constant (resp. nonincreasing, nondecreasing).

Proposition 2.1.5. If (Xn)n∈N is a (Fn)n∈N-martingale and ϕ : R → R is a convex function s.t.
ϕ (Xn) is integrable for all n ∈ N, then (ϕ (Xn))n∈N is a (Fn)n∈N-submartingale.

Proof. Use Jensen’s Inequality (Proposition 1.3.2).

Remark 2.1.6. If (Xn)n∈N is a (Fn)n∈N-martingale (resp. supermartingale, submartingale), then it
is also a

(
FXn

)
n∈N

-martingale (resp. supermartingale, submartingale). Therefore, when we say that
a sequence (Xn)n∈N is a martingale (resp. supermartingale, submartingale) without mentioning a
filtration, we mean that it is a

(
FXn

)
n∈N

-martingale (resp. supermartingale, submartingale).

Example 2.1.7.

(i) Random walks. Let (ξn)n∈N be a sequence of i.i.d. random variables s.t. ξ1 ∈ L1 (Ω,F ,P).
Define Sn = ∑n

i=1 ξi for n ∈ N. Then (Sn)n∈N is a
(
F ξn
)
n∈N

-martingale if E [ξ1] = 0, a(
F ξn
)
n∈N

-supermartingale if E [ξ1] ≤ 0, and a
(
F ξn
)
n∈N

-submartingale if E [ξ1] ≥ 0.

(ii) Random products. Let (ξn)n∈N be a sequence of i.i.d. nonnegative random variables s.t. ξ1 ∈
L1 (Ω,F ,P). Define Pn = ∏n

i=1 ξi for n ∈ N. Then (Pn)n∈N is a
(
F ξn
)
n∈N

-martingale if E [ξ1] =
1, a

(
F ξn
)
n∈N

-supermartingale if E [ξ1] ≤ 1, and a
(
F ξn
)
n∈N

-submartingale if E [ξ1] ≥ 1.

(iii) Closed martingales. Fix a random variable Z ∈ L1 (Ω,F ,P) and a filtration (Fn)n∈N. Then
(E [Z | Fn])n∈N is a (Fn)n∈N-martingale.

(iv) Martingales in L2. Consider a sequence (Xn)n∈N ∈ L2 (Ω,F ,P)N that is a (Fn)n∈N-martingale.
Then the increments (Xn+1 −Xn)n∈N are orthogonal to each other in L2 (Ω,F ,P).
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2.2 Building new martingales from old ones
Definition 2.2.1 (Previsible process). Given a filtration (Fn)n∈N, we say that a random process
(Cn)n∈N∗ is previsible if Cn is Fn−1-measurable for all n ∈ N∗.

Proposition 2.2.2. Let (Xn)n∈N be a (Fn)n∈N-martingale (resp. supermartingale, submartingale)
and let (Cn)n∈N∗ be a (Fn)n∈N-previsible process that is almost surely bounded. Then the process C ·X
defined by:

∀n ∈ N, (C ·X)n =
n∑
k=1

Ck (Xk −Xk−1) ,

is also a (Fn)n∈N-martingale (resp. supermartingale, submartingale).

Remark 2.2.3. One can interpret Proposition 2.2.2 in terms of gambling games: Xn − Xn−1 rep-
resents the outcomes of a game, Cn represents the bet placed on the nth-outcome, so that (C · X)n
represents the fortune of the gambler after n steps. Hence, Proposition 2.2.2 means that one cannot
turn an unfair game (a supermartingale) into a fair one (a martingale or submartingale).

2.3 Stopping times and stopping theorems
Definition 2.3.1 (Stopping time). Given a filtration (Fn)n∈N, a stopping time is a random variable
τ : Ω→ N ∪ {∞} s.t. one of the three following equivalent assertions is verified:

(i) ∀n ∈ N, (τ ≤ n) ∈ Fn.

(ii) ∀n ∈ N, (τ > n) ∈ Fn.

(iii) ∀n ∈ N, (τ = n) ∈ Fn.

Remark 2.3.2. Intuitively, a stopping time is a random time at which a decision can be taken given
the information available at that time.

Example 2.3.3.

(i) Constant random variables are stopping times.

(ii) Let (ξn)n∈N be a sequence of i.i.d. random variables with law Be
(

1
2

)
. Then the random variable

τ = inf {n ∈ N, ξn = 1} is a
(
F ξn
)
n∈N

-stopping time.

(iii) Let (Xn)n∈N be a (Fn)n∈N-adapted sequence of random variables. If A is a measurable subset of
Ω, then TA = inf {n ∈ N, Xn ∈ A} is a (Fn)n∈N-stopping time. Moreover, if A ∈ Fn for some
n ∈ N, then τ = n1A + (n+ 1)1({A) is a (Fn)n∈N-stopping time.

Proposition 2.3.4. Let σ, τ , (τk)k∈N be (Fn)n∈N-stopping times. Then (σ + τ), infk∈N τk, supk∈N τk,
lim infk→+∞ τk and lim supk→+∞ τk are (Fn)n∈N-stopping times.

Definition 2.3.5 (Events measurable before τ). Given a filtration (Fn)n∈N and a stopping time τ ,
the σ-algebra of events measurable before τ is defined by:

Fτ = {A ∈ F , ∀n ∈ N, A ∩ (τ ≤ n) ∈ Fn} .

Proposition 2.3.6. Let (Xn)n∈N be a (Fn)n∈N-adapted process and consider τ a (Fn)n∈N-stopping
time. Then the random variable Xτ1(τ<+∞) is Fτ -measurable.

Proposition 2.3.7. Let σ and τ be two (Fn)n∈N-stopping times s.t. σ ≤ τ . Then Fσ ⊆ Fτ .
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Theorem 2.3.8 (Doob’s Stopping Theorem, first version). Let (Xn)n∈N be a (Fn)n∈N-martingale
(resp. supermartingale, submartingale) and σ, τ be two almost surely bounded (Fn)n∈N-stopping times
s.t. σ ≤ τ , then:

E [Xτ | Fσ] = Xσ (resp. ≤, ≥).
In particular, if τ is a (Fn)n∈N-stopping time that is bounded, then:

E [Xτ ] = E [X0] (resp. ≤, ≥).

Proof. Let N ∈ N be s.t. σ ≤ N almost surely. We shall compute E [XN | Fσ]. For A ∈ Fσ, we
have:

E [XN1A] = E
[
XN

N∑
n=0

1A∩(σ=n)

]
=

N∑
n=0

E
[
XN1A∩(σ=n)

]
=

N∑
n=0

E
[
E [XN | Fn]1A∩(σ=n)

]

=
N∑
n=0

E
[
Xn1A∩(σ=n)

]
=

N∑
n=0

E
[
Xσ1A∩(σ=n)

]
= E [Xσ1A] .

Since Xσ is Fσ-measurable, we get E [XN | Fσ] = Xσ. Likewise, E [XN | Fτ ] = Xτ . Therefore:

E [Xτ | Fσ] = E [E [XN | Fτ ] | Fσ] = E [XN | Fσ] = Xσ.

The proof is similar for supermartingales and submartingales, using the fact that if X ′ is a G-
measurable random variable s.t. ∀A ∈ G, E [X1A] ≥ E [X ′1A], then E [X | G] ≥ X ′.

Proposition 2.3.9. If (Xn)n∈N is a (Fn)n∈N-martingale (resp. supermartingale, submartingale)
and τ is (any) (Fn)n∈N-stopping time, then Xτ = (Xn∧τ )n∈N is a (Fn)n∈N-martingale (resp. super-
martingale, submartingale), called the martingale stopped at τ (resp. supermartingale, submartingale
stopped at τ).

Proof. For n ∈ N∗, set Cn = 1(n≤τ). Hence, (Cn)n∈N∗ is a bounded previsible process. Therefore,
according to Proposition 2.2.2, Xτ = C ·X +X0 is a martingale (resp. supermartingale, submartin-
gale).

Proposition 2.3.10. Let (Xn)n∈N be a (Fn)n∈N-martingale (resp. supermartingale, submartingale)
and τ be an almost surely finite (Fn)n∈N-stopping time. Assume that E[τ ] < +∞ and that ∃M ∈
R+, ∀n ∈ N, |Xn+1 −Xn| ≤M almost surely. Then E [Xτ ] = E [X0] (resp. ≤, ≥).

Proof. Apply Theorem 2.3.8 to (Xn∧τ )n∈N, which is a martingale according to Proposition 2.3.9,
and use the Dominated Convergence Theorem.

2.4 Almost sure convergence for (super)martingales
Definition 2.4.1 (Upcrossings). Let (xn)n∈N ∈ RN. Consider two real numbers a < b. Define two
sequences (Sk(x))k∈N∗ and (Tk(x))k∈N∗ by induction:

S1(x) = inf {n ≥ 0, xn < a} ∈ N and T1(x) = inf {n ≥ S1(x), xn ≥ b} ∈ N,

and for all k ∈ N∗:

Sk+1(x) = inf {n ≥ Tk(x), xn < a} and Tk+1(x) = inf {n ≥ Sk+1(x), xn ≥ b} .

The number of upcrossings before time n is defined as Nn(x, a, b) = sup {k ≥ 1, Tk(x) ≤ n}; the total
number of upcrossings is therefore N∞(x, a, b) = supn∈NNn(x, a, b).

Proposition 2.4.2. A sequence x ∈ RN converges in R iff

∀(a, b) ∈ Q2, a < b =⇒ N∞(x, a, b) < +∞.
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Proof. Use the fact that x converges in R iff lim infn→+∞ xn = lim supn→+∞ xn.

Lemma 2.4.3 (Doob’s Upcrossings Lemma). Let (Xn)n∈N be a (Fn)n∈N-supermartingale. Then, for
every real numbers a < b:

E [Nn(X, a, b)] ≤ 1
b− a

E
[
(Xn − a)−

]
.

Proof. Fix two real numbers a < b. Note that, for k ∈ N∗, Sk(X) and Tk(X) are (Fn)n∈N-stopping
times. For n ∈ N∗, define:

Cn =
∑
k∈N∗

1(Sk(X)<n≤Tk(X)).

Hence (Cn)∗n∈N is a bounded (Fn)n∈N-previsible process. According to Proposition 2.2.2, C ·X is a
supermartingale. But:

∀n ∈ N, (C ·X)n =
Nn(X,a,b)∑

k=1

XTk(X)︸ ︷︷ ︸
≥b

−XSk(X)︸ ︷︷ ︸
<a

+

Xn −XSNn(X,a,b)+1(X)︸ ︷︷ ︸
<a

1(SNn(X,a,b)+1(X)≤n)

≥ (b− a)Nn(X, a, b) + (Xn − a)1(SNn(X,a,b)+1(X)≤n)
≥ (b− a)Nn(X, a, b) + (Xn − a)1(Xn<a)

= (b− a)Nn(X, a, b)− (Xn − a)− .

As (C ·X) is a supermartingale, we have ∀n ∈ N, E [(C ·X)n] ≤ E [(C ·X)0] = 0, which gives the
result.

Theorem 2.4.4. Let (Xn)n∈N be a supermartingale that is bounded in L1 (i.e. supn∈N E [|Xn|] < +∞,
or equivalently supn∈N E [X−n ] < +∞). Then there exists X∞ ∈ L1 (Ω,F ,P) s.t. Xn −−−−→

n→+∞
X∞ a.s.

Proof. Let a < b be two rational numbers. According to Lemma 2.4.3, we have:

E [Nn (X, a, b)] ≤ 1
b− a

(E [|Xn|] + |a|) ≤ M + |a|
b− a

,

where M = supn∈N E [|Xn|] < +∞. By monotone convergence, E [N∞ (X, a, b)] ≤ M+|a|
b−a < +∞, so

N∞ (X, a, b) < +∞ a.s. This shows that:

P

 ⋃
(a,b)∈Q2

a<b

(N∞ (X, a, b) = +∞)

 ≤ ∑
(a,b)∈Q2

a<b

P (N∞ (X, a, b) = +∞) = 0.

Using Proposition 2.4.2, (Xn)n∈N converges a.s. in R to some limit X∞. But:

E [|X∞|] = E
[
lim inf
n→+∞

|Xn|
]
≤ lim inf

n→+∞
E [|Xn|] ≤ sup

n∈N
E [|Xn|] < +∞.

Therefore, X∞ is a.s. finite and X∞ ∈ L1 (Ω,F ,P).

Corollary 2.4.5. If (Xn)n∈N is a nonnegative supermartingale, then there exists X∞ ∈ L1 (Ω,F ,P)
s.t. Xn −−−−→

n→+∞
X∞ a.s.

Proof. If (Xn)n∈N is a nonnegative supermartingale, then ∀n ∈ N, E [|Xn|] = E [Xn] ≤ E [X0], so
Theorem 2.4.4 applies.

Corollary 2.4.6. Let (Xn)n∈N be a submartingale that is bounded in L1 (i.e. supn∈N E [|Xn|] < +∞,
or equivalently supn∈N E [X+

n ] < +∞). Then there exists X∞ ∈ L1 (Ω,F ,P) s.t. Xn −−−−→
n→+∞

X∞ a.s.
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Proof. Apply Theorem 2.4.4 to (−Xn)n∈N.

Corollary 2.4.7. Let (Xn)n∈N be a martingale with bounded increments: supn∈N ‖Xn+1 −Xn‖∞ <
+∞. Set:

A =
(
(Xn)n∈N converges in R

)
and B =

(
lim inf
n→+∞

Xn = −∞ and lim sup
n→+∞

Xn = +∞
)
.

Then P(A ∪B) = 1.

Proof. Introduce τk = inf {n ∈ N, Xn ≥ k} and τ−k = inf {n ∈ N, Xn < −k} for k ∈ N; τk and
τ−k are stopping times. According to Proposition 2.3.9, Xτk is a martingale that is bounded by
k + supn∈N ‖Xn+1 −Xn‖∞, so it converges a.s. according to Theorem 2.4.4. Do the same thing for
Xτ−k and obtain the result.

2.5 Doob’s Lp-inequality and convergence in Lp

Lemma 2.5.1. Let (Xn)n∈N be a submartingale. Set Xn = max0≤k≤nXk for n ∈ N. Then:

∀x > 0, P
(
Xn > x

)
≤ 1
x
E
[
Xn1(Xn>x)

]
.

Proof. Let τ = inf {n ∈ N, Xn > x}. τ is a stopping time and
(
Xn > x

)
= (τ ≤ n). According to

Proposition 2.3.9, Xτ is a submartingale, so E [Xn∧τ ] ≤ E [Xn] for all n ∈ N. But:

E [Xn∧τ ] = E
[
Xn1(τ>n) +Xτ1(τ≤n)

]
≥ E [Xn]− E

[
Xn1(τ≤n)

]
+ xP (τ ≤ n) .

This gives the desired result.

Theorem 2.5.2 (Doob’s Lp-inequality). Let (Xn)n∈N be a martingale. For n ∈ N, set X∗n =
max0≤k≤n |Xk|. Then:

∀p > 1, ∀n ∈ N, ‖X∗n‖p ≤
p

p− 1 ‖Xn‖p .

Proof. Apply Lemma 2.5.1 to the submartingale (Yn)n∈N = (|Xn|)n∈N. Note that Y n = X∗n for all
n ∈ N. Hence, for n ∈ N:

E [(X∗n)p] =
∫ ∞

0
pxp−1P (X∗n > x) dx

≤
∫ ∞

0
pxp−1 1

x
E
[
|Xn|1(X∗n>x)

]
dx

= pE
[
|Xn|

1
p− 1 (X∗n)p−1

]

≤ p

p− 1E [|Xn|p]1/p E
[
(X∗n)q(p−1)

]1/q
,

where 1
p

+ 1
q

= 1. Since (p − 1)q = p, we obtain ‖X∗n‖p = E [(X∗n)p]1−1/q ≤ p
p−1E [|Xn|p]1/p =

p
p−1 ‖Xn‖p
Corollary 2.5.3. Fix p > 1. Let (Xn)n∈N be a (Fn)n∈N-martingale that is bounded in Lp (i.e.
supn∈N ‖Xn‖p < +∞). Then (Xn)n∈N converges a.s. and in Lp to a limit X∞. Moreover, for every
bounded stopping time τ , we have Xτ = E [X∞ | Fτ ].

Proof. Our assumptions imply that (Xn)n∈N is bounded in L1, so according to Theorem 2.4.4, it
converges a.s. to some limit X∞ ∈ L1 (Ω,F ,P). Since (Xn)n∈N is bounded in Lp, Fatou’s Lemma
shows that X∞ ∈ Lp (Ω,F ,P). Now, Doob’s Lp-inequality (Theorem 2.5.2) gives:

E [(X∗n)p] ≤
(

p

p− 1

)p
sup
n∈N

E [|Xn|p] < +∞.
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Moreover, X∗n −−−−→n→+∞
X∗∞ = supk∈N |Xk|; by monotone convergence, we get E [(X∗∞)p] < +∞. But

|Xn −X∞|p ≤ 2p (|X∞|p + |Xn|p) ≤ 2p+1 (X∗∞)p ∈ L1 (Ω,F ,P). By dominated convergence, we
obtain Xn −−−−→

n→+∞
X∞ in Lp. Moreover, as E [· | G] sends Lp to Lp, we obtain that E [X∞ | Fn] = Xn,

and similarly for stopping times τ .

Corollary 2.5.4. If (Xn)n∈N is a (Fn)n∈N-martingale that is bounded in Lp, then (Xn)n∈N is closed
in Lp, i.e. there exists Z ∈ Lp (Ω,F ,P) s.t. ∀n ∈ N, Xn = E [Z | Fn].

2.6 Martingales in L2

Proposition 2.6.1 (Doob’s decomposition). Let (Xn)n∈N be a (Fn)n∈N-submartingale. Then there
exists a unique (Fn)n∈N-martingale (Mn)n∈N and a nondecreasing (Fn)n∈N-previsible process (An)n∈N
with A0 = 0 s.t.

∀n ∈ N, Xn = Mn + An.

Moreover, for all n ∈ N, we have An+1 − An = E [Xn+1 −Xn | Fn].

Definition 2.6.2 (Angle bracket). If (Xn)n∈N ∈ L2 (Ω,F ,P)N is a martingale, then (X2
n)n∈N is a

submartingale, and we define the angle bracket (〈X〉n)n∈N as the nondecreasing previsible process
arising in Doob’s decomposition of (X2

n)n∈N (c.f. Proposition 2.6.1). Moreover, we set 〈X〉∞ =
limn→+∞ 〈X〉n ∈ [0,+∞].

Proposition 2.6.3. Let (Xn)n∈N ∈ L2 (Ω,F ,P)N be a martingale. Then:

(i) (〈X〉∞ < +∞) a.s.=⇒
(
(Xn)n∈N converges

)
.

(ii) If in addition supn∈N ‖Xn+1 −Xn‖∞ < +∞, then (〈X〉∞ < +∞) a.s.⇐⇒
(
(Xn)n∈N converges

)
.

Proof. (i) Fix K > 0 and define:

TK = inf
{
n ∈ N, 〈X〉n+1 > K

}
.

Then TK is a stopping time and the stopped process
(
〈X〉n∧Tk

)
n∈N

is previsible. Therefore, Doob’s
decomposition for the submartingale

(
X2
n∧TK

)
n∈N

is given by:

∀n ∈ N, X2
n∧TK = Mn∧TK + 〈X〉n∧TK .

Hence, (Xn∧TK )n∈N is bounded in L2 by E [M0] + K. According to Corollary 2.5.3, (Xn∧TK )n∈N
converges a.s. Thus, on the set (〈X〉∞ ≤ K) = (TK = +∞), one has that (Xn)n∈N converges a.s.
Taking the union over all K ∈ N gives the desired result. (ii) Since ∀n ∈ N, X2

n = Mn + 〈X〉n, we
have

(
Mn −−−−→

n→+∞
−∞

)
on the event (〈X〉∞ = +∞) ∩

(
(Xn)n∈N converges

)
. As in Corollary 2.4.7,

we prove that:
P
(
(〈X〉∞ = +∞) ∩

(
(Xn)n∈N converges

))
= 0.

Corollary 2.6.4 (Conditioned Borel-Cantelli Lemma). Let (Fn)n∈N be a filtration and consider a
sequence (An)n∈N∗ of events s.t. An is Fn-measurable for all n ∈ N∗. Then:∑

k∈N∗
P (Ak | Fk−1) < +∞

 a.s.=⇒
∑
k∈N∗

1Ak < +∞
 .
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Proof. Set Yn = ∑n
k=1 1Ak , Zn = ∑n

k=1 P (Ak | Fk−1) and Xn = Yn − Zn. Then (Xn)n∈N is a
martingale and Doob’s decomposition for the submartingale (Yn)n∈N is given by ∀n ∈ N, Yn =
Xn + Zn. Moreover, for n ∈ N, we have:

〈X〉n+1 − 〈X〉n = E
[
X2
n+1 −X2

n | Fn
]

= E
[
(Xn+1 −Xn)2 | Fn

]
= P (An+1 | Fn) (1− P (An+1 | Fn)) ≤ P (An+1 | Fn) .

Therefore, for n ∈ N, 〈X〉n ≤ Zn. Thus, if Z∞ = ∑
k∈N∗ P (Ak | Fk−1) < +∞, then 〈X〉∞ < +∞, so

(Xn)n∈N converges according to Proposition 2.6.3, and so does (Yn)n∈N.

2.7 Uniform integrability
Proposition 2.7.1. Let X be an integrable random variable. Then:

(i) E
[
|X|1(|X|>a)

]
−−−−→
a→+∞

0.

(ii) ∀ε > 0, ∃δ > 0, ∀A ∈ F , P(A) ≤ δ =⇒ E [|X|1A] ≤ ε.

Definition 2.7.2 (Uniform integrability). A family (Xi)i∈I is said to be uniformly integrable if:

sup
i∈I

E
[
|Xi|1(|Xi|>a)

]
−−−−→
a→+∞

0.

Example 2.7.3. If X is an integrable random variable, then the family {X} is uniformly integrable.

Proposition 2.7.4. A uniformly integrable family of random variables is bounded in L1, but the
converse is false.

Proposition 2.7.5. If the family (Xi)i∈I of random variables is dominated in the sense that there
exists an integrable random variable Y s.t. ∀i ∈ I, |Xi| ≤ Y , then (Xi)i∈I is uniformly integrable.

Proposition 2.7.6. Let (Xi)i∈I be a family of random variables. The following assertions are equiv-
alent:

(i) (Xi)i∈I is uniformly integrable.

(ii) (Xi)i∈I is bounded in L1 and:

∀ε > 0, ∃δ > 0, ∀A ∈ F , P(A) ≤ δ =⇒ sup
i∈I

E [|Xi|1A] ≤ ε.

(iii) There exists a nondecreasing function G : R+ → R+ s.t.

G(x)
x
−−−−→
x→+∞

+∞ and sup
i∈I

E [G (|Xi|)] < +∞.

Corollary 2.7.7. A family of random variables that is bounded in Lp for some p > 1 is uniformly
integrable.

Lemma 2.7.8. If (Xi)i∈I and (Yj)j∈J are uniformly integrable families of random variables, then
(Xi + Yj)(i,j)∈I×J is uniformly integrable.

Theorem 2.7.9. Let (Xn)n∈N and X be random variables. The following assertions are equivalent:

(i) Xn
L1

−−−−→
n→+∞

X.

(ii) Xn
P−−−−→

n→+∞
X and (Xn)n∈N is uniformly integrable.
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Proof. (ii)⇒ (i) Let us show that E [|Xn −X|] −−−−→
n→+∞

0, assuming that Xn
P−−−−→

n→+∞
X and (Xn)n∈N

is uniformly integrable. Fix ε > 0. Note that:

E [|Xn −X|] = E
[
|Xn −X|1(|Xn−X|≤ε)

]
+ E

[
|Xn −X|1(|Xn−X|>ε)

]
≤ ε+ E

[
|Xn −X|1(|Xn−X|>ε)

]
.

By Lemma 2.7.8, (Xn −X)n∈N is uniformly integrable, therefore there exists δ > 0 s.t. P(A) ≤
δ =⇒ ∀n ∈ N, E [|Xn −X|1A] ≤ ε. Now, since Xn

P−−−−→
n→+∞

X, choose N ∈ N s.t. ∀n ≥

N, P (|Xn −X| > ε) ≤ δ. This yields ∀n ≥ N, E [|Xn −X|] ≤ 2ε. (i) ⇒ (ii) If Xn
L1

−−−−→
n→+∞

X,

then Xn
P−−−−→

n→+∞
X because of Markov’s inequality. Now let ε > 0. Choose N ∈ N s.t. ∀n ≥

N, E [|Xn −X|] ≤ ε
2 , then choose δ > 0 s.t. for any event A with P(A) ≤ δ, we have E [|X|1A] ≤ ε

2
and max0≤n<N E [|Xn −X|1A] ≤ ε

2 . Hence, if A is an event s.t. P(A) ≤ δ, we have:

E [|Xn|1A] ≤ E [|X|1A] + E [|Xn −X|1A] ≤ ε.

2.8 Martingales in L1

Theorem 2.8.1. Let (Xn)n∈N be a (Fn)n∈N-martingale. Then (Xn)n∈N converges in L1 iff (Xn)n∈N
is uniformly integrable. In this case, (Xn)n∈N is closed in L1 by its limit X∞:

∀n ∈ N, Xn = E [X∞ | Fn] .

Proof. Use Proposition 2.7.4, Theorem 2.4.4 and Theorem 2.7.9 (as well as the fact that if a sequence
of random variables converges almost surely, then it converges in probability).

Corollary 2.8.2 (Doob’s Stopping Theorem, uniformly integrable version). Let (Xn)n∈N be a uni-
formly integrable martingale and consider two stopping times σ, τ s.t. σ ≤ τ . Then:

E [Xτ | Fσ] = Xσ.

In particular, if τ is a stopping time, then:

E [Xτ ] = E [X0] .

Proof. Note that, according to Theorem 2.8.1 and Theorem 2.4.4, (Xn)n∈N converges almost surely
and in L1 towards a random variable X∞ ∈ L1. Now let τ be a stopping time. We shall show that
E [X∞ | Fτ ] = Xτ . For A ∈ Fτ , we have:

E [X∞1A] =
∑
n∈N

E
[
X∞1A∩(τ=n)

]
+ E

[
X∞1A∩(τ=∞)

]
=
∑
n∈N

E
[
E [X∞ | Fn]1A∩(τ=n)

]
+ E

[
Xτ1A∩(τ=∞)

]
=
∑
n∈N

E
[
Xn1A∩(τ=n)

]
+ E

[
Xτ1A∩(τ=∞)

]
= E [Xτ1A] .

Hence E [X∞ | Fτ ] = Xτ . We easily obtain the desired result using the fact that Fσ ⊆ Fτ .

3 Applications of martingales

3.1 Lévy’s Convergence Theorem
Lemma 3.1.1. If Z ∈ L1 (Ω,F ,P), then the family {E [Z | G] , G sub-σ-algebra of F} is uniformly
integrable.
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Proof. For a > 0, we have:

E
[
|E [Z | G]|1(|E[Z|G]|>a)

]
≤ E

[
E [|Z| | G]1(E[|Z||G]>a)

]
= E

[
|Z|1(E[|Z||G]>a)

]
.

Now by Markov’s Inequality, P (E [|Z| | G] > a) ≤ 1
a
E [|Z|] −−−−→

a→+∞
0. We conclude by uniform inte-

grability of {Z}.

Theorem 3.1.2 (Lévy’s Convergence Theorem). Let (Fn)n∈N be a filtration and Z ∈ L1 (Ω,F ,P).
Then (E [Z | Fn])n∈N converges a.s. and in L1 to E [Z | F∞].

Proof. Define Xn = E [Z | Fn] for n ∈ N. By Lemma 3.1.1, the martingale (Xn)n∈N is uniformly
integrable. By Theorem 2.8.1, (Xn)n∈N converges a.s. and in L1 to some limit X∞ ∈ L1 (Ω,F ,P). We
easily check that ∀A ∈ ⋃n∈NFn, E [X∞1A] = E [Z1A]. Since ⋃n∈NFn is stable by finite intersections
and generates F∞, this is actually true for all A ∈ F∞, which shows that X∞ = E [Z | F∞].

Corollary 3.1.3. Let (Fn)n∈N be a filtration.

(i) IfMUI denotes the set of uniformly integrable (Fn)n∈N-martingales, then the map:

Z ∈ L1 (Ω,F ,P) 7−→ (E [Z | Fn])n∈N ∈MUI

is a bijection.

(ii) Let p ∈ ]1,+∞[. If MLp denotes the set of (Fn)n∈N-martingales that are bounded in Lp, then
the map:

Z ∈ Lp (Ω,F ,P) 7−→ (E [Z | Fn])n∈N ∈MLp

is a bijection.

In particular, a martingale is closed iff it is uniformly integrable.

Corollary 3.1.4 (Kolmogorov’s Zero-One Law). Let (Hn)n∈N be a family of independent sub-σ-
algebras of F . Let Gn = ∨

k≥nHk for n ∈ N and G∞ = ⋂
n∈N Gn. Then G∞ is trivial:

∀A ∈ G∞, P(A) ∈ {0, 1}.

Proof. Let Fn = ∨
0≤k≤nHk for n ∈ N. Then (Fn)n∈N is a filtration and F∞ = G0 ⊇ G∞. Hence,

if A ∈ G∞, we have E [1A | Fn] a.s.−−−−→
n→+∞

E [1A | F∞] = 1A by Lévy’s Convergence Theorem (Theorem
3.1.2). But note that A ∈ Gn+1, so A is independent from Fn; therefore E [1A | Fn] = E [1A] = P(A).
Therefore, P(A) = 1A a.s.

Theorem 3.1.5 (Hewitt–Savage Zero-One Law). Let (ξn)n∈N be independent random variables. Con-
sider a map F : RN → R s.t.

∀σ ∈ Sn, F
(
(ξn)n∈N

)
= F

((
ξσ(n)

)
n∈N

)
.

Then F
(
(ξn)n∈N

)
is a.s. constant.

3.2 Backwards martingales
Definition 3.2.1 (Backwards martingale). Consider a filtration (Fn)n∈Z− (i.e. s.t. Fn−1 ⊆ Fn for
all n ∈ Z−; we then write F−∞ = ⋂

n∈Z− Fn) and a sequence (Xn)n∈Z− of integrable random variables.
We say that (Xn)n∈Z− is a (Fn)n∈Z−-backwards martingale if ∀n ∈ Z−, E [Xn | Fn−1] = Xn−1.

Theorem 3.2.2. Let (Xn)n∈Z− be a (Fn)n∈Z−-backwards martingale. Then (Xn)n∈Z− converges a.s.
and in L1 to X−∞ = E [X0 | F−∞].
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Proof. Note that (Xn)n∈Z− = (E [X0 | Fn])n∈Z− is uniformly integrable by Lemma 3.1.1. Adapt
the proof of Theorem 2.4.4 to prove that (Xn)n∈Z− converges a.s. The convergence is also L1 since
(Xn)n∈Z− is uniformly integrable. To show that X−∞ = E [X0 | F−∞], adapt the proof of Lévy’s
Convergence Theorem (Theorem 3.1.2).

Corollary 3.2.3 (Strong Law of Large Numbers). Consider i.i.d. random variables (ξn)n∈N∗ in
L1 (Ω,F ,P). Set Sn = ∑n

k=1 ξk for n ∈ N. Then
(

1
n
Sn
)
n∈N

converges a.s. and in L1 to E [ξ1].

Proof. Let Gn = σ (Sn, Sn+1, . . . ) = σ (Sn, ξn+1, ξn+2, . . . ) for n ∈ N. Hence, (G−n)n∈Z− is a back-
wards filtration. Let us show that

(
1
−nS−n

)
n∈Z−

is a backwards martingale. It is clearly integrable
and adapted. Moreover, for n ∈ N:

E
[ 1
n
Sn | Gn+1

]
= 1
n
E [Sn+1 − ξn+1 | Gn+1] = 1

n
(Sn+1 − E [ξn+1 | Sn+1]) ,

using the fact that Sn+1 is Gn+1-measure and Proposition 1.4.4. Now, by symmetry, we have
E [ξn+1 | Sn+1] = E [ξk | Sn+1] for all k ∈ {1, . . . , n+ 1}, so Sn+1 = ∑n+1

k=1 E [ξk | Sn+1] = (n +
1)E [ξn+1 | Sn+1], which gives:

E
[ 1
n
Sn | Gn+1

]
= 1
n+ 1Sn+1.

So
(

1
−nS−n

)
n∈Z−

is indeed a backwards martingale. By Theorem 3.2.2,
(

1
n
Sn
)
n∈N

converges a.s. and
in L1 to Y∞ ∈ L1 (Ω,F ,P). If k ∈ N is fixed, we have Y∞ = limn→+∞

1
n

(ξk+1 + · · ·+ ξn), so Y∞
is measurable w.r.t. the asymptotic σ-algebra ⋂n∈N ∨k≥n σ (ξk). By Kolmogorov’s Zero-One Law
(Corollary 3.1.4), Y∞ is a.s. constant, so Y∞ = E [Y∞] = limn→+∞ E

[
1
n
Sn
]

= E [ξ1].

3.3 Radon-Nikodym Theorem
Lemma 3.3.1. Let µ and ν be two finite measures on a measurable space (Ω,F). Assume that
µ� ν, i.e. ∀A ∈ F , ν(A) = 0 =⇒ µ(A) = 0. Then:

∀ε > 0, ∃δ > 0, ∀A ∈ F , ν(A) ≤ δ =⇒ µ(A) ≤ ε.

Proof. Assume for contradiction the existence of ε0 > 0 s.t. for all n ∈ N∗, there exists An ∈ F s.t.
ν (An) ≤ 1

2n and µ (An) > ε0. Then ν
(
lim supn→+∞An

)
= 0 but µ

(
lim supn→+∞An

)
≥ ε0. This is

a contradiction.

Theorem 3.3.2 (Radon-Nikodym Theorem). Consider a measurable space (Ω,F) that is separable,
i.e. s.t. there exists (Fn)n∈N ∈ P(Ω)N s.t. F = σ ({Fn} , n ∈ N). Let P and Q be finite measures on
(Ω,F) with P a probability measure. If Q� P, then there exists a unique random variable X that is
integrable and s.t. ∀A ∈ F , Q(A) = E [X1A].

Proof. Let Fn = σ ({F0} , . . . , {Fn}) for n ∈ N. We have Fn = σ ({Aε} , ε ∈ {−1, 1}n+1), where
Aε = ⋂n

i=0 F
εi
i , with the notation F 1 = F and F−1 = Ω\F . We now define a Fn-measurable random

variable Xn as follows:
Xn =

∑
ε∈{−1,1}n+1

Q (Aε)
P (Aε)

1Aε ,

with the convention Q(Aε)
P(Aε) = 0 if P (Aε) = 0. Hence, we have ∀A ∈ Fn, Q(A) = E [Xn1A] (i.e. Xn is

the Radon-Nikodym derivative of Q|Fn w.r.t. P|Fn ). Now, (Xn)n∈N is a (Fn)n∈N martingale. With
Lemma 3.3.1, we show that (Xn)n∈N is uniformly integrable. By Theorem 2.8.1, (Xn)n∈N converges
a.s. and in L1 to a limit X. Therefore, ∀A ∈ ⋃n∈NFn, Q(A) = E [X1A]. Since ⋃n∈NFn is stable by
finite intersections and generates F , we obtain the result for all A ∈ F .
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4 Markov chains

4.1 Definitions and first properties
Definition 4.1.1 (Markov transition function). Let S be a countable set. The elements of S will be
viewed as states. A Markov transition function (or transition matrix, or transition kernel) on S is
a map Q : S2 → R+ s.t.

∀x ∈ S,
∑
y∈S

Q (x, y) = 1.

Hence, for all x ∈ S, Q (x, ·) defines a probability distribution on S.

Notation 4.1.2. Let S be a countable set.

(i) If Q,Q′ are two transition functions on S (seen as matrices), we define a transition function
QQ′ : (x, y) ∈ S2 7−→ ∑

z∈S Q(x, z)Q(z, y).

(ii) If Q is a transition function and n ∈ N, we define Qn = Q · · ·Q.

(iii) If Q is a transition function and f ∈ RS is a bounded function (seen as a column vector), we
define a bounded function Qf : x ∈ S 7−→ ∑

y∈S Q(x, y)f(y).

(iv) If Q is a transition function and µ ∈ RS is a bounded function (seen as a row vector), we
define a bounded function µQ : y ∈ S 7−→ ∑

x∈S µ(x)Q(x, y).

(v) If Q is a transition function, f is a column vector and µ is a row vector, we define µQf =∑
x,y∈S µ(x)Q(x, y)f(y).

Row vectors should be seen as measures on S, while column vector should be seen as functions on S;
they play different roles.

Definition 4.1.3 (Markov chains). A Markov chain with transition function Q (or a Q-Markov
chain) is a random process (Xn)n∈N with values in S and s.t., for all n ∈ N and y, x0, . . . , xn ∈ S,
we have:

P (Xn+1 = y | X0 = x0, . . . , Xn = xn) = Q (xn, y) ,

as soon as this probability is well-defined.

Proposition 4.1.4. If (Xn)n∈N is a Q-Markov chain, then for all n ∈ N and x0, . . . , xn ∈ S:

P (X0 = x0, . . . , Xn = xn) = P (X0 = x0)Q (x0, x1)Q (x1, x2) · · ·Q (xn−1, xn) .

Proposition 4.1.5. The random process (Xn)n∈N is a Q-Markov chain iff for all y ∈ S, we have:

P (Xn+1 = y | X0, . . . , Xn) = Q (Xn, y) .

In other words, the conditional law of Xn+1 given X0, . . . , Xn is Q (Xn, ·).

Corollary 4.1.6. Let (Xn)n∈N be a Q-Markov chain. Let f : S → R+ be a bounded function.

(i) For all n ∈ N, E [f (Xn+1) | X0, . . . , Xn] = Qf (Xn).

(ii) For all x ∈ S, E [f (X1) | X0 = x] = Qf(x).

(iii) If µ is the probability law of X0, then E [f (X1)] = µQf .

Proposition 4.1.7. Let (Xn)n∈N be a Q-Markov chain.

(i) For x0, xn ∈ S, P (Xn = xn | X0 = x0) = Qn (x0, xn).
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(ii) For y1, . . . , yk, x0, . . . , xn ∈ S:

P (Xn+1 = y1, . . . , Xn+k = yk | X0 = x0, . . . , Xn = xn) = P (X1 = y1, . . . , Xk = yk | X0 = xn) .

Therefore, (Xk+np)n∈N is a Qp-Markov chain for all p, k ∈ N∗.

Example 4.1.8.

(i) Independent and identically distributed sequences. Let µ be a probability distribution on a
countable set S. Set Q : (x, y) ∈ S2 7−→ µ(y). Then an i.i.d. sequence of random variables of
law µ is a Q-Markov chain.

(ii) Random walks in abelian groups. Let G be a countable abelian group equipped with a probability
law µ. Let (ξn)n∈N∗ be a sequence of i.i.d. random variables of law µ. Then the sequence
(∑n

k=1 ξk)n∈N is a Markov chain associated to the transition function Q(x, y) = µ(y − x).

(iii) Branching processes. Let µ be a probability distribution on N, let (ξn,i)(n,i)∈N2 be i.i.d. random
variables of law µ. Let X0 be a random variable independent of (ξn,i)(n,i)∈N2, and define (Xn)n∈N
by induction by:

Xn+1 =
Xn−1∑
i=0

ξn,i.

Then (Xn)n∈N is a Markov chain associated to the transition function Q(x, y) = µ∗x(y) =∑
n1+···+nx=y µ (n1) · · ·µ (nx).

4.2 Existence of Markov chains, the canonical process
Theorem 4.2.1. For every probability distribution µ and for every transition function Q on a count-
able set S, there exists a probability space (Ω,F ,P) and a sequence (Xn)n∈N of random variables that
is a Q-Markov chain with initial law µ.

Proof. Take a probability space (Ω,F ,P) on which we can define a sequence (Un)n∈N of i.i.d. random
variables with law U ([0, 1]). Now, arrange the elements of S into a list (si)i∈N and define:

X0 =
∑
i∈N∗

si1{∑
j<i

µ(sj)≤U0<
∑

j≤i µ(sj)
}.

Thus, X0 has law µ. Inductively, once X0, . . . , Xn have been constructed s.t. Xk is σ (U0, . . . , Uk)-
measurable and (X0, . . . , Xn) is a Q-Markov chain, set:

Xn+1 =
∑
i∈N∗

si1{∑
j<i

Q(Xn,sj)≤Un+1<
∑

j≤iQ(Xn,sj)
}.

Thus, for j ∈ N∗, P
(
Xn+1 = sj | FUn

)
= Q (Xn, xj). Hence, by induction, we construct a Q-Markov

chain (Xn)n∈N with initial law µ.

Proposition 4.2.2. Let (Yn)n∈N be a Q-Markov chain defined on a probability space (Ω,F ,P). Con-
sider the measurable space

(
SN,P(S)⊗N

)
and the (measurable) map ϕ : ω ∈ Ω 7−→ (Yn(ω))n∈N ∈ SN.

If (Yn)n∈N is s.t. P (Y0 = x) = 1 for some x ∈ S (i.e. (Yn)n∈N has initial distribution δx), then
we write Px = ϕ∗P; it is a probability distribution on

(
SN,P(S)⊗N

)
. Now, the family of laws

(Px)x∈S does not depend on the choice of (Ω,F ,P) and the sequence (Xn)n∈N of random variables
on

(
SN,P(S)⊗N,Px

)
defined as the projections on each coordinate is called the canonical Q-Markov

chain.

17



4.3 The simple and strong Markov properties
Notation 4.3.1. For any set S and for any k ∈ N, we define the shift operator θk : x ∈ SN 7−→
(xn+k)n∈N ∈ SN.

Theorem 4.3.2 (Simple Markov Property). Let (Xn)n∈N be the canonical Q-Markov chain (write Px
for the law of the canonical Markov chain starting at x, and Ex for the corresponding expectation).
Let F = ∨

n∈NFXn . Let G be a nonnegative F-measurable function. Then, for every n ∈ N and for
every nonnegative FXn -measurable function F , we have:

Ex [F · (G ◦ θn)] = Ex [F · EXn [G]] .

In other words, for every n ∈ N:

Ex
[
G ◦ θn | FXn

]
= EXn [G] .

Note that EXn [G] is the random variable ω 7→ EXn(ω) [G].

Proof. Show that the statement is true for F = 1{X0=x0,...,Xn=xn} and G = 1{X0=xn,...,Xk=xn+k} with
x0, . . . , xn+k ∈ S. Use the Monotone Class Theorem to generalise to F = 1A, G = 1B with A ∈ Fn
and B ∈ F , and then use an approximation argument to obtain the result.

Theorem 4.3.3 (Strong Markov Property). Let (Xn)n∈N be the canonical Q-Markov chain. Let
F = ∨

n∈NFXn . Let G be a nonnegative F-measurable function. Then, for every
(
FXn

)
n∈N

-stopping
time τ and for every nonnegative Fτ -measurable function F , we have:

Ex
[
F1{τ<+∞} · (G ◦ θτ )

]
= Ex

[
F1{τ<+∞} · EXτ [G]

]
.

In other words, for every stopping time τ :

1{τ<+∞}Ex [G ◦ θτ | Fτ ] = 1{τ<+∞}EXτ [G] .

Proof. Let F,G be as above. Then:

Ex
[
F1{τ<+∞} · (G ◦ θτ )

]
=
∑
t∈N

Ex
[
F1{τ=t} · (G ◦ θt)

]
=
∑
t∈N

Ex
[
F1{τ=t} · EXt [G]

]
= Ex

[
F1{τ<+∞} · EXτ [G]

]
.

Remark 4.3.4. Consider the canonical Q-Markov chain (Xn)n∈N. If µ is any distribution on S,
write:

Pµ =
∑
x∈S

µ(x)Px;

thus, under
(
SN,P(S)⊗N,Pµ

)
, (Xn)n∈N is a Q-Markov chain with initial law µ. Hence, the simple

and strong Markov properties remain valid if one replaces Ex by Eµ.

4.4 Classification of states
Proposition 4.4.1. Let (Xn)n∈N be the canonical Q-Markov chain. For x ∈ S, define T+

x =
inf {n ∈ N∗, Xn = x} and Nx = ∑

n∈N 1{Xn=x}. Then we are in one of the two following cases:

(i) Either Px (T+
x < +∞) = 1 and Nx = +∞ Px-a.s. We then say that x is a recurrent state.

(ii) Or Px (T+
x < +∞) < 1 and Nx < +∞ Px-a.s. Moreover:

Ex [Nx] = 1
Px (T+

x = +∞) .

We then say that x is a transient state.
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Proof. Note that {Nx ≥ k + 1} =
{
T+
x < +∞, Nx ◦ θT+

x
≥ k

}
. Therefore, by the Strong Markov

Property:

Px (Nx ≥ k + 1) = Ex
[
1{T+

x <+∞}EXT+
x

[
1{Nx≥k}

]]
= Px

(
T+
x < +∞

)
Px (Nx ≥ k) .

Hence:
Px (Nx ≥ k) = Px

(
T+
x < +∞

)k
.

So, under Px, we have shown that Nx follows a geometric distribution with parameter Px (T+
x =∞);

we easily deduce the result.

Definition 4.4.2 (Green function of a Markov chain). Let (Xn)n∈N be the canonical Q-Markov chain.
We define the Green function of (Xn)n∈N by:

G : (x, y) ∈ S 7−→ Ex

∑
n∈N

1{Xn=y}

 .
We have shown that x ∈ S is recurrent iff G(x, x) = +∞.

Remark 4.4.3. Let (Xn)n∈N be the canonical Q-Markov chain. Then, for all x, y ∈ S:

G(x, y) =
∑
n∈N

Qn(x, y).

In particular, G(x, y) > 0⇐⇒ ∃n ∈ N, Qn(x, y) > 0.

Proposition 4.4.4 (“Recurrent states are contagious”). Let (Xn)n∈N be the canonical Q-Markov
chain. Let x 6= y be two states s.t. x is recurrent and G(x, y) > 0. Write Tx = inf {n ∈ N, Xn = x}
and similarly for Ty. Then:

(i) Px (Ty < +∞) = Py (Tx < +∞) = 1.

(ii) y is a recurrent state.

(iii) G(y, x) > 0.

Proof. Since x is recurrent, the Strong Markov Property implies that:

0 = Px
(
T+
x = +∞

)
≥ Px

(
T+
x = +∞, Ty = +∞

)
= Px

(
T+
x ◦ θTy = +∞, Ty = +∞

)
= Ex

[
1{Ty<+∞}EXTy

[
1{Tx=+∞}

]]
= Px (Ty < +∞)Py (Tx = +∞) .

Since Px (Ty < +∞) > 0 (because G(x, y) > 0), we obtain Py (Tx = +∞) = 0. In particular,
G(y, x) > 0. Since G(x, y) > 0 and G(y, x) > 0, there exist n1, n2 ∈ N s.t. Qn1(x, y) > 0 and
Qn2(y, x) > 0. Now:

G(y, y) ≥ Qn2(y, x)G(x, x)Qn1(x, y) = +∞,
so y is recurrent. Moreover, by symmetry, Px (Ty < +∞) = 1.

Definition 4.4.5 (Irreducible chain). Let (Xn)n∈N be the canonical Q-Markov chain. We say that
the Markov chain is irreducible if ∀x, y ∈ S, G(x, y) > 0. In this case, either all states are recurrent
(and we say that the chain is recurrent) or all states are transient (and we say that the chain is
transient).

Definition 4.4.6 (Recurrence classes). Let (Xn)n∈N be the canonical Q-Markov chain. Let R ⊆ S
be the set of recurrent states. Define an equivalence relation ∼ on R by:

x ∼ y ⇐⇒ G(x, y) > 0.

The relation ∼ is indeed an equivalence relation by Proposition 4.4.4. Its equivalence classes are
called the recurrence classes of the Markov chain.
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Theorem 4.4.7. Let (Xn)n∈N be the canonical Q-Markov chain. For x ∈ R, denote by Rx the
recurrence class of x. For any y ∈ S, write Ny = ∑

n∈N 1{Xn=y}.

(i) If x ∈ R is a recurrent state, then Px-a.s.:

∀y ∈ Rx, Ny = +∞ and ∀y ∈ S\Rx, Ny = 0.

(ii) If x ∈ S\R is a transient state, we have Ny < +∞ Px-a.s. for all y ∈ S\R. Moreover, if we
let T = inf {n ∈ N, Xn ∈ R}, we have Px-a.s.:

• Either T = +∞ and ∀y ∈ R, Ny = 0.
• Or T < +∞ and ∀y ∈ RXT , Ny = +∞ and ∀y ∈ R\RXT , Ny = 0.

Example 4.4.8.

(i) Let (ξn)n∈N∗ be a sequence of i.i.d. random variables with law µ on S. If ξ0 is any random
variable on S that is independent from (ξn)n∈N∗, then (ξn)n∈N is a Markov chain. The set of
recurrent states is the support of µ, and all recurrent states are in the same recurrence class.

(ii) Let µ be a law on Z and let (ξn)n∈N∗ be a sequence of i.i.d. random variables with law µ. Let
Sn = ∑n

k=1 ξk for n ∈ N. Then (Sn)n∈N is a Markov chain on Z. If we assume that ξ1 is L1,
then:

• If E [ξ1] 6= 0, then all states are transient.
• If E [ξ1] = 0, then all states are recurrent, and the chain is irreducible iff the support of µ
generates Z (as an additive group).

(iii) Let (Xn)n∈N be a Markov chain on a finite set S. Then the chain is irreducible iff the graph
(S, {(x, y) ∈ S2, Q(x, y) > 0}) is strongly connected. Moreover, if the chain is irreducible, then
it is recurrent.

(iv) Let (Xn)n∈N be the branching process with law µ, as in Example 4.1.8. Assume that µ(1) <
1. Note that (Xn)n∈N is a Markov chain, where 0 is the only recurrent state (and 0 is even
absorbing).

4.5 Invariant measures for Markov chains
Definition 4.5.1 (Invariant measure). Let µ be a nonnegative measure on S. We say that µ is
invariant for the transition function Q if:

µQ = µ,

i.e. ∀y ∈ S, µ(y) = ∑
x∈S µ(x)Q(x, y). In this case, we have ∀n ∈ N, µQn = µ.

Remark 4.5.2. Let µ be an invariant measure for Q. If (Xn)n∈N is a Q-Markov chain with initial
“law” µ (which does not always make sense because µ is not necessarily a probability distribution),
then Xn also has “law” µ for all n ∈ N.

Definition 4.5.3 (Reversible measure). Let µ be a nonnegative measure on S. We say that µ is
reversible for the transition function Q if:

∀x, y ∈ S, µ(x)Q(x, y) = µ(y)Q(y, x).

A reversible measure is always invariant.
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Theorem 4.5.4. Let (Xn)n∈N be the canonical Q-Markov chain. If x is a recurrent state, set:

µx : y ∈ S 7−→ Ex

T+
x −1∑
n=0

1{Xn=y}

 ,
where T+

x = inf {n ∈ N∗, Xn = x}. Then µx is an invariant measure, µx(x) = 1 and µx(y) > 0 iff y
is in the recurrence class of x.

Proof. Note that:

µx(y) =
∑
n∈N∗

Px
(
Xn = y, n ≤ T+

x

)
=
∑
n∈N∗

∑
z∈S

Px
(
Xn−1 = z, Xn = y, n ≤ T+

x

)
=
∑
n∈N∗

∑
z∈S

Ex
[
1{Xn−1=z, n≤T+

x }PXn−1 (X1 = y)
]

=
∑
n∈N∗

∑
z∈S

Px
(
Xn−1 = z, n ≤ T+

x

)
Q(z, y) =

∑
z∈S

Q(z, y)µx(z).

Remark 4.5.5. Let (Xn)n∈N be the canonical Q-Markov chain. If x1, . . . , xr are recurrent states
then for all α1, . . . , αr ∈ R, ∑r

i=1 αiµxi is an invariant measure.

Lemma 4.5.6. Assume that the Q-Markov chain (Xn)n∈N is irreducible and recurrent. If ν is an
invariant measure, then:

∀x, y ∈ S, ∀p ∈ N, ν(y) ≥ ν(x)Ex

(T+
x −1)∧p∑
k=0

1{Xn=y}

 .
Proof. By induction on p, for x fixed and y arbitrary. The result is clear for p = 0. If it is true for
p, then write ν(y) = ∑

z∈S ν(z)Q(z, y) and apply the induction hypothesis to obtain a lower bound
for ν(z).

Proposition 4.5.7. Assume that the Q-Markov chain (Xn)n∈N is irreducible and recurrent. Then,
for all x ∈ S, any invariant measure ν is equal to ν(x)µx.

Proof. Fix x ∈ S and let ν be an invariant measure. Using Lemma 4.5.6, letting p→ +∞ and using
the Monotone Convergence Theorem, we obtain:

∀y ∈ S, ν(y) ≥ ν(x)µx(y).

But since ν and µx are both invariant, we have:

∀n ∈ N, ν(x) =
∑
y∈S

ν(y)Qn(y, x) ≥
∑
y∈S

ν(x)µx(y)Qn(y, x) = ν(x)µx(x) = ν(x).

Thus, equality must hold throughout, which gives ∀y ∈ S, ∀n ∈ N, (ν(y)− ν(x)µx(y))Qn(x, y) = 0.
Fixing y ∈ S and summing over n gives (ν(y)− ν(x)µx(y))G(x, y) = 0, so ν(y) = ν(x)µx(y) because
G(x, y) > 0 since the chain is irreducible.

4.6 Invariant measures of finite mass
Remark 4.6.1. For an irreducible and recurrent Markov chain, either all nonzero invariant measures
have finite mass (in which case there exists an invariant probability distribution) or none of them
does.

Proposition 4.6.2. Assume that the Q-Markov chain (Xn)n∈N is irreducible and admits a nonzero
invariant measure µ of finite mass. Then the Markov chain is recurrent.

21



Proof. Let x ∈ S s.t. µ(x) > 0. We have ∀n ∈ N, µ(x) = ∑
y∈S µ(y)Qn(y, x), therefore:

+∞ =
∑
y∈S

µ(y)G(y, x) ≤
∑
y∈S

µ(y) G(y, x)
Py (Tx < +∞) =

∑
y∈S

µ(y)G(x, x) = µ(S)G(x, x),

so G(x, x) = +∞ and x is recurrent.

Theorem 4.6.3. Assume that the Q-Markov chain (Xn)n∈N is irreducible and recurrent. Then we
are in one of the following two situations:

(i) Either there exists an invariant probability distribution π (also called the stationary probability
distribution), in which case Ex [T+

x ] < +∞ and π(x) = 1
Ex[T+

x ] for all x ∈ S. We then say that
the chain is positive recurrent.

(ii) Or all nonzero invariant measures have infinite mass, in which case Ex [T+
x ] = +∞ for all

x ∈ S. We then say that the chain is null recurrent.

Proof. The dichotomy is clear given Remark 4.6.1 and the fact that µx(S) = Ex [T+
x ] for all x ∈ S.

And in the case where the chain is positive recurrent, we have π = µx
µx(S) = µx

Ex[T+
x ] for all x ∈ S.

Corollary 4.6.4. An irreductible Markov chain with finite state space is positive recurrent.

Example 4.6.5. Consider a nonoriented simple graph G = (V,E). Define a transition function Q
by Q(x, y) = 1

deg x if {x, y} ∈ E, and Q(x, y) = 0 otherwise. Consider the Q-Markov chain.

(i) The chain is irreducible iff G is connected.

(ii) An invariant measure is given by µ(x) = deg x for all x ∈ V .

(iii) Assume that G is connected and finite. Then the chain is positive recurrent, with invariant
probability measure π(x) = deg x

2|E| . In particular:

Ex
[
T+
x

]
= 2 |E|

deg x.

(iv) Assume that G is connected and infinite. Then the chain is either transient or null recurrent.

Example 4.6.6. The simple random walk on Z is irreducible and null recurrent, and µ(n) = 1
defines an invariant measure.

4.7 Asymptotic behaviour of recurrent chains – an ergodic theorem
Theorem 4.7.1. Assume that the Q-Markov chain (Xn)n∈N is irreducible and recurrent. Let µ be a
nonzero invariant measure. Let f, g : S → R+ be s.t. the integrals

∫
S f dµ and

∫
S g dµ are not both

infinite. Then, for all x ∈ S, the following holds Px-a.s.:∑n
k=0 f (Xk)∑n
k=0 g (Xk)

−−−−→
n→+∞

∫
S f dµ∫
S g dµ .

Proof. Fix x ∈ S. We may assume that both integrals are finite (otherwise, approximate the
function with infinite integral by a monotone sequence of functions with finite integrals). Define a
sequence

(
T (k)

)
k∈N

of random variable by T (0) = 0, and:

∀k ∈ N, T (k+1) = T (k) + T+
x ◦ θT (k) .
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Hence 0 = T (0) < T (1) < · · · < T (k) < · · · are the consecutive visit times at x; they are all stopping
times. Define another sequence (Zk)k∈N∗ of random variables by:

∀k ∈ N∗, Zk =
T (k)∑

i=T (k−1)+1
f (Xi) .

If h1, . . . , hm are functions S → R+, one shows by induction, using the Strong Markov Property
(Theorem 4.3.3), that:

Ex [h1 (Z1) · · ·hm (Zm)] = Ex [h1 (Z1)] · · ·Ex [hm (Zm)] .

Therefore, (Zk)k∈N∗ is a sequence of independent random variables. They are also identically dis-
tributed, and we have Ex [Z1] = 1

µ(x)
∫
S f dµ. Using the Strong Law of Large Numbers (Corollary

3.2.3), we obtain, Px-a.s.:
1
k

k∑
i=1

Zi −−−−→
k→+∞

1
µ(x)

∫
S
f dµ.

Now, for n ∈ N∗, there exists a unique random variable k(n) s.t. T (k(n)) < n ≤ T (k(n)+1). We have
k(n) −−−−→

n→+∞
+∞ Px-a.s. And, since f ≥ 0:

1
k(n)

k(n)∑
i=1

Zi︸ ︷︷ ︸
−−−−→
n→+∞

1
µ(x)

∫
S
f dµ

≤ 1
k(n)

n∑
j=1

f (Xj) ≤
1

k(n)

k(n)+1∑
i=1

Zi︸ ︷︷ ︸
−−−−→
n→+∞

1
µ(x)

∫
S
f dµ

.

Therefore 1
k(n)

∑n
j=1 f (Xj) −−−−→

n→+∞
1

µ(x)
∫
S f dµ. We obtain the result by dividing by the same sum

for g instead of f .

Remark 4.7.2. Theorem 4.7.1 remains valid if we replace Px by Pγ where γ is any probability
distribution on S (because Pγ = ∑

x∈S γ(x)Px).

Corollary 4.7.3. Assume that the Q-Markov chain (Xn)n∈N is irreducible and recurrent.

(i) If (Xn)n∈N is positive recurrent, then, for all x, y ∈ S, the following holds Px-a.s.:

1
n

n∑
k=0

1{Xk=y} −−−−→
n→+∞

π(y),

where π is the stationary probability distribution.

(ii) If (Xn)n∈N is null recurrent, then, for all x, y ∈ S, the following holds Px-a.s.:

1
n

n∑
k=0

1{Xk=y} −−−−→
n→+∞

0.

Corollary 4.7.4. Assume that the Q-Markov chain (Xn)n∈N is irreducible and positive recurrent.
Let f : S → R be an integrable function w.r.t. the stationary probability distribution π. Then, for all
x ∈ S, the following holds Px-a.s.:

1
n

n∑
i=0

f (Xi) −−−−→
n→+∞

∫
S
f dπ.
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4.8 Asymptotic behaviour of Markov chains – convergence in probabil-
ity

Definition 4.8.1 (Period of a state). The period of a state x ∈ S of the Q-Markov chain is defined
by:

dx = gcd {n ∈ N, Qn(x, x) > 0} .

Lemma 4.8.2. Let x ∈ S be a state of the Q-Markov chain. Let Ax = {n ∈ N, Qn(x, x) > 0}. Then
the subgroup of Z generated by Ax is:

〈Ax〉 = Ax − Ax = dxZ.

Proof. Show that Ax is stable under addition.

Proposition 4.8.3. Assume that the Q-Markov chain (Xn)n∈N is irreducible. Then all states have
the same period, and this period is called the period of the chain and denoted by d.

Proof. Let x, y ∈ S. Since the Markov chain is irreducible, there exist n1, n2 ∈ N∗ s.t. Qn1(y, x) > 0
and Qn2(x, y) > 0. Thus, Qn1+n2(y, y) ≥ Qn1(y, x)Qn2(x, y) > 0, so n1 + n2 ∈ Ay. Now, for n ∈ Ax,
we have n1 + n+ n2 ∈ Ay for the same reason, and therefore:

n = (n1 + n+ n2)− (n1 + n2) ∈ 〈Ay〉 .

This proves that Ax ⊆ 〈Ay〉, so 〈Ax〉 ⊆ 〈Ay〉. By symmetry, 〈Ax〉 = 〈Ay〉, and by Lemma 4.8.2,
dx = dy.

Definition 4.8.4 (Aperiodic chain). An irreducible Markov chain is said to be aperiodic if it has
period 1.

Remark 4.8.5. In an irreducible Markov chain, if there exists x0 ∈ S s.t. Q (x0, x0) > 0, then the
chain is aperiodic.

Lemma 4.8.6. Assume that the Q-Markov chain (Xn)n∈N is irreducible and aperiodic. Then:

∀x, y ∈ S, ∃n0 ∈ N, ∀n ≥ n0, Q
n(x, y) > 0.

Proof. Note that we only need to prove the result for x = y (indeed, if x 6= y, there exists m0 ∈ N
s.t. Qm0(x, y) > 0 and thus, if Qn(x, x) > 0 then Qn+m0(x, y) ≥ Qn(x, x) + Qm0(x, y) > 0). Since
dx = 1, we have 〈Ax〉 = Z by Lemma 4.8.2, so there exists m ∈ Ax s.t. m + 1 ∈ Ax. If m ∈ {0, 1},
then 1 ∈ Ax and we are done. So assume that m ≥ 2. Note that:

∀k ∈ {0, . . . ,m} , m2 + k = (m− k)m+ k (m+ 1) ∈ Ax.

We have found (m + 1) consecutive integers in Ax. Thus, if n ≥ m2, write n = km + i, with
m2 ≤ i < m2 +m and k ∈ N. Thus, m ∈ Ax and i ∈ Ax, so n ∈ Ax. This proves the result.

Theorem 4.8.7. Assume that the Q-Markov chain (Xn)n∈N is irreducible, aperiodic and positive
recurrent. Then, for all x ∈ S: ∑

y∈S
|Px (Xn = y)− π(y)| −−−−→

n→+∞
0,

where π is the stationary probability distribution.

Proof. Define a transition function Q̂ on S × S by:

Q̂ ((x, y), (x′, y′)) = Q (x, x′)Q (y, y′) .
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Now, consider the canonical process (Xn, Yn)n∈N for the Q̂-Markov chain under the law P̂δx⊗π. Then
(Xn)n∈N and (Yn)n∈N are both Q-Markov chains, with respective initial distributions δx and π. Using
the aperiodicity of Q and Lemma 4.8.6, we show that (Xn, Yn)n∈N is irreducible. Moreover, if π is
the stationary probability distribution for Q, then π ⊗ π is an invariant probability distribution for
Q̂; by Proposition 4.6.2, (Xn, Yn)n∈N is positive recurrent. Let:

τ = inf {n ∈ N, Xn = Yn} .

Note that τ ≤ T(0,0) = inf {n ∈ N, (Xn, Yn) = (0, 0)}. But since the Markov chain is recurrent, T(0,0)

is P̂δx⊗π-a.s. finite, and so is τ . Now, for n ∈ N:

|Px (Xn = y)− π(y)| =
∣∣∣P̂δx⊗π (Xn = y)− P̂δx⊗π (Yn = y)

∣∣∣ =
∣∣∣Êδx⊗π [1{Xn=y} − 1{Yn=y}

]∣∣∣
≤
∣∣∣Êδx⊗π [(1{Xn=y} − 1{Yn=y}

)
1{τ≤n}

]∣∣∣+ Êδx⊗π
[(
1{Xn=y} + 1{Yn=y}

)
1{τ>n}

]
.

And:

P̂δx⊗π (Xn = y, τ ≤ n) =
n∑
k=0

∑
z∈S

P̂δx⊗π (Xn = y,Xk = z, τ = k)

=
n∑
k=0

∑
z∈S

P̂δx⊗π (Xk = z, τ = k)Qn−k (z, y)

=
n∑
k=0

∑
z∈S

P̂δx⊗π (Yk = z, τ = k)Qn−k (z, y)

= P̂δx⊗π (Yn = y, τ ≤ n) .

Thus Êδx⊗π
[(
1{Xn=y} − 1{Yn=y}

)
1{τ≤n}

]
= P̂δx⊗π (Xn = y, τ ≤ n)− P̂δx⊗π (Yn = y, τ ≤ n) = 0. From

this, we obtain:∑
y∈S
|Px (Xn = y)− π(y)| ≤

∑
y∈S

Êδx⊗π
[(
1{Xn=y} + 1{Yn=y}

)
1{τ>n}

]
= 2P̂δx⊗π (τ > n) −−−−→

n→+∞
0.

Remark 4.8.8. If S is finite, then Theorem 4.8.7 is a consequence of the Perron-Frobenius Theorem:
let M be a N × N matrix with nonnegative entries. Assume that there exists n0 ∈ N s.t. Mn0 has
strictly positive entries. Then:

(i) The spectral radius of M is a real eigenvalue of M , which we denote by λ∗.

(ii) The eigenvalues of M other than λ∗ have strictly smaller modules than λ∗.

(iii) The λ∗-eigenspace is of the form Vect (x∗), where x∗ is a vector in RN with strictly positive
entries. Moreover, there is only one eigenvalue of M with this property.

Remark 4.8.9. If µ and ν are two measures on S, the distance of total variation between µ and ν
is defined by:

‖µ− ν‖TV = sup
A⊆S
|µ(A)− ν(A)| = 1

2
∑
x∈S
|µ(x)− ν (x)| .

Therefore, Theorem 4.8.7 can be restated as:

∀x ∈ S, ‖Px (Xn ∈ ·)− π (·)‖TV −−−−→n→+∞
0.
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4.9 Harmonic functions
Remark 4.9.1. Let (Xn)n∈N be the canonical Q-Markov chain. Let f : S → R be a function. In gen-
eral,

(
f (Xn) +∑n−1

i=0 (I −Q) f (Xi)
)
n∈N

is a martingale under Px for all x ∈ S if ∀x ∈ S, Q |f | (x) <
+∞.

Definition 4.9.2 (Harmonic functions). Let (Xn)n∈N be the canonical Q-Markov chain. Let f : S →
R be a function.

(i) We say that f is harmonic at x ∈ S if Qf(x) = f(x). We say that f is harmonic if it is
harmonic at every state. In this case, (f (Xn))n∈N is a martingale under Px for all x ∈ S.

(ii) We say that f is superharmonic (resp. subharmonic) at x ∈ S if Qf(x) ≤ f(x) (resp.
Qf(x) ≥ f(x)). We say that f is superharmonic (resp. subharmonic) if it is superharmonic
(resp. subharmonic) at every state. In this case, (f (Xn))n∈N is a supermartingale (resp. sub-
martingale) under Px for all x ∈ S.

Proposition 4.9.3. Let (Xn)n∈N be the canonical Q-Markov chain. Let h : S → R be a function that
is harmonic (resp. superharmonic, subharmonic) on some subset A ⊆ S. Then

(
h
(
Xn∧τS\A

))
n∈N

is a martingale (resp. supermartingale, submartingale) under Px for all x ∈ S, where τS\A =
inf {n ∈ N, Xn ∈ S\A}.

Proof. Note that:

Ex
[
h
(
X(n+1)∧τS\A

)
− h

(
Xn∧τS\A

)
| FXn

]
= Ex

[(
h
(
X(n+1)∧τS\A

)
− h

(
Xn∧τS\A

))
1{n<τS\A} | F

X
n

]
= 1{n<τS\A}Ex

[
h (Xn+1)− h (Xn) | FXn

]
= 1{n<τS\A}

(
Ex
[
h (Xn+1) | FXn

]
− h (Xn)

)
= 1{n<τS\A} (EXn [h (X1)]− h (Xn))

= 1{n<τS\A} (Qh (Xn)− h (Xn)) .

Remark 4.9.4. Finding a harmonic function on some subset A ⊆ S amounts to solving a problem
of the form: Qf − f = −ϕ on A

f = g on S\A
, (P )

for some specified functions ϕ : A → R and g : S\A → R. This is the discrete analogue of the
Poisson problem: ∆f = −ϕ on D

f = g on ∂D
.

We say that (Q− I) is the discrete Laplacian.

Proposition 4.9.5. Let (Xn)n∈N be the canonical Q-Markov chain. Let A ⊆ S be a finite subset.
Consider two functions ϕ : A → R and g : S\A → R, with g bounded. Then the discrete Poisson
problem (P ) has a unique solution given by:

f(x) = Ex

g (XτS\A

)
+

τS\A−1∑
i=0

ϕ (Xi)
 .
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Proof. Uniqueness. If f is a solution of (P ), set Mn = f
(
Xn∧τS\A

)
+∑(n−1)∧(τS\A−1)

i=0 (I −Q) f (Xi).
Then (Mn)n∈N is a martingale, so:

f(x) = Ex [M0] = Ex [Mn] = Ex

f (Xn∧τS\A

)
+

(n−1)∧(τS\A−1)∑
i=0

ϕ (Xi)

 .
Since A is finite, ϕ is bounded and Ex

[
τS\A

]
< +∞. Moreover, g is bounded, so we can use the

Dominated Convergence Theorem and make n→ +∞ in the above equation, which gives the result.
Existence. Define f as above. Then f = g on S\A. Now, if x ∈ A, we have:

f(x) = Ex

g (XτS\A

)
◦ θ1 +

τS\A−1∑
i=1

ϕ (Xi)
 ◦ θ1

+ ϕ(x) = ϕ(x) + Ex [f (X1)] = ϕ(x) +Qf(x).

Remark 4.9.6. In Proposition 4.9.5, the existence of the solution remains valid with the same proof
if A is infinite.

Proposition 4.9.7. Assume that the Q-Markov chain (Xn)n∈N is irreducible and recurrent. Then
every bounded or nonnegative harmonic function h : S → R is constant.

Proof. Note that (h (Xn))n∈N is a bounded or nonnegative martingale, so it converges a.s. to a
random variable Z (by Theorem 2.4.4). Now, for all x ∈ S, h (Xn) = h(x) for infinitely many values
of n; therefore Z = h(x) a.s. Since this is true for all x, h is constant.

Definition 4.9.8 (Invariant and tail σ-algebras). If (Xn)n∈N is a sequence of random variables, we
define:

(i) The invariant σ-algebra J = {A ∈ σ (Xn, n ∈ N) , θ1(A) = A},

(ii) The tail σ-algebra T = ⋂
n∈N σ (Xn, Xn+1, . . . ).

We have J ⊆ T .

Theorem 4.9.9. Let (Xn)n∈N be the canonical Q-Markov chain. Then the set R of bounded J -
measurable random variables is in bijection with the set H of bounded harmonic functions, via:

Z ∈ R 7−→ (x 7→ Ex[Z]) ∈H and h ∈H 7−→ lim
n→+∞

h (Xn) ∈ R.

Example 4.9.10. Using Theorem 3.1.5, we can show that bounded harmonic functions on Zd are
constant. Therefore, by Theorem 4.9.9, the invariant σ-algebra of the simple random walk on Zd is
trivial. In particular, it cannot happen that the simple random walk in Zd remains in some cone after
a certain amount of time.

4.10 The Poisson process
Definition 4.10.1 (Poisson process). Let (ξn)n∈N∗ be i.i.d. random variables with exponential law
of parameter θ, for θ ∈ R∗+. We set Tn = ∑n

i=1 ξi for n ∈ N and:

Nt =
∑
n∈N∗

1{Tn≤t}.

Then the collection (Nt)t∈R+
is called the Poisson process with intensity θ.

Theorem 4.10.2. Consider the Poisson process (Nt)t∈R+
with intensity θ ∈ R∗+. Then:

(i) For t ∈ R∗+, Nt has a Poisson law of parameter θt.

(ii) For s, t ∈ R∗+, the variables (Nt+s −Nt) and Nt have the same law and are independent.
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