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1 Introduction to stability
Definition 1.1 (Hamming metric). For n ∈ N, the normalised Hamming metric is the metric dn on
Sn defined by

dn(σ, τ) = 1
n
|{i ∈ {1, . . . , n} , σ(i) 6= τ(i)}| .
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Theorem 1.2 (Arzhantseva-Paunescu, 2015). Nearly commuting permutations are near commuting
permutations.

Or more precisely: for all ε > 0, there exists δ > 0 such that for all n ∈ N and for all σ, τ ∈ Sn,
if dn (στ, τσ) < δ, then there exist σ′, τ ′ ∈ Sn such that σ′τ ′ = τ ′σ′ and dn (σ, σ′) + dn (τ, τ ′) < ε.

1.1 Basic definitions
Notation 1.3. If S is a finite (or infinite) set, we shall denote by F = FS the free group on S.
Definition 1.4 (Local and global defect). Let E ⊆ F be a set of reduced words in F. Let n ∈ N and
f : S → Sn.
(i) We say that f is a solution for E if f̃(ω) = idSn for all ω ∈ E, where f̃ : F→ Sn is the unique

extension of f to F.

(ii) The local defect of f with respect to E is

LE(f) =
∑
ω∈E

dn
(
f̃(ω), idSn

)
.

(iii) The global defect of f with respect to E is

GE(f) = inf
h:S→Sn

solution for E

∑
s∈S

dn (f(s), h(s)) .

Definition 1.5 (Stability). Let E ⊆ F be a finite set. We say that the family of equations (ω = 1)ω∈E
is stable (in permutations) (or that E is stable) if there exists F : [0,∞) → [0,∞) with lim0 F = 0
such that for all n ∈ N and for all f : S → Sn, we have

GE(f) 6 F (LE(f)) .

In other words, if the local defect is small, then so is the global defect.
Remark 1.6. The Arzhantseva-Paunescu Theorem says that

{
s1s2s

−1
1 s−1

2

}
is stable (in permuta-

tions).

1.2 Connection with group theory
Definition 1.7 (Stability of groups). Let Γ be a group.
(i) A sequence of functions (fn : Γ→ Sn)n∈N is an asymptotic homomorphism is for all γ1, γ2 ∈ Γ,

dn (fn (γ1γ2) , fn (γ1) fn (γ2)) −−−→
n→∞

0.

(ii) The group Γ is stable (in permutations) if for any asymptotic homomorphism (fn : Γ→ Sn)n∈N,
there is a sequence of homomorphisms (hn : Γ→ Sn)n∈N such that, for all γ ∈ Γ,

dn (fn(γ), hn(γ)) −−−→
n→∞

0.

Proposition 1.8. Let S be a finite set and let E be a finite subset of FS. Then the following
assertions are equivalent:
(i) The family of equations (ω = 1)ω∈E is stable.

(ii) The group 〈S | E〉 is stable.
Proof. Use the fact that dn (cad, cbd) = dn (a, b), and fix for each γ ∈ Γ = 〈S | E〉 a word over S±1

in the class of γ.
Remark 1.9. The Arzhantseva-Paunescu Theorem says that Z2 is stable.
Theorem 1.10. Let Γ be a finitely generated amenable group. Then Γ is stable if and only if
IRSfi(Γ)w∗ = IRS(Γ).
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1.3 Property testing
Remark 1.11. Suppose given two permutations a, b ∈ Sn with n very large, such that one of the
following holds:

(i) ab = ba,

(ii) The pair (a, b) is at a distance at least ε from the closest commuting pair (a′, b′) ∈ Sn ×Sn.

We wish to know whether we are in Case (i) or (ii).
We may use a “sample and substitute” algorithm: sample x1, . . . , xk ∈ {1, . . . , n} uniformly and

independently. Then report “Case (i)” if ab (xi) = ba (xi) for all 1 6 i 6 k, or “Case (ii)” otherwise.
Then

P (Reporting “Case (ii)” | (i)) = 0.

Moreover, the fact that
{
s1s2s

−1
1 s−1

2

}
is stable implies that we can choose k independently of n such

that
P (Reporting “Case (i)” | (ii)) < δ.

1.4 Stability in terms of group actions
Remark 1.12. Functions f : S → Sn correspond bijectively to actions FS y {1, . . . , n}.

We would like to define the local and global defect of an action of FS on a finite set X.

Definition 1.13 (Action graph). Given an action F y X, the action graph is the graph with vertex
set X, and with an edge labelled by s from x to s · x for all s ∈ S and x ∈ X.

Definition 1.14 (Local and global defect of an action). Let E ⊆ F. Suppose given an action F y X,
where X is a finite set.

(i) The local defect of X with respect to E is

LE(X) = 1
|X|
|{(ω, x) ∈ E ×X, ω · x 6= x}| .

This measures how many words in E differ from loops in the action graph.

(ii) Consider another action F y Y with |Y | = |X|. If h : X → Y is a bijection, we set

‖h‖S = 1
|X|
|{(s, x) ∈ S ×X, h(s · x) 6= s · h(x)}| .

This measures how far h is from inducing a graph homomorphism on actions graphs. We now
define

dS(X, Y ) = inf
h:X→Y
bijection

‖h‖S .

The global defect of X with respect to E is

GE(X) = inf
FyY
|Y |=|X|
LE(Y )=0

dS(X, Y ).

Proposition 1.15. Let f : S → Sn and X = {1, . . . , n}, equipped with the action induced by f .
Then

LE(f) = LE(X) and GE(f) = GE(X).
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2 Invariant random subgroups and stability

2.1 Invariant random subgroups and random stabilisers
Definition 2.1 (Invariant random subgroups). Consider a discrete countable group Γ. Denote by
Sub(Γ) the set of subgroups of Γ. Note that Sub(Γ) is a closed subset of the space {0, 1}Γ of all
subsets of Γ. The latter, when equipped with the product topology, is a compact metrisable space.
Therefore, Sub(Γ) is also a compact metrisable space when equipped with the induced topology.

Now consider the space Prob (Sub(Γ)) of Borel probability measures on Sub(Γ). We define an
action Γ y Prob (Sub(Γ)) by

(γ · µ) (H) = µ
(
γ−1Hγ

)
.

The space of invariant random subgroups of Γ is

IRS(Γ) = {µ ∈ Prob (Sub(Γ)) , ∀γ ∈ Γ, γ · µ = µ} .

Example 2.2. (i) If N E Γ is a normal subgroup and δN is the Dirac measure at N , then δN ∈
IRS(Γ).

(ii) If H 6fi Γ is a subgroup of finite index, then H has finitely many conjugates; write H =
{γHγ−1, γ ∈ Γ}. Then

µ = 1
k

∑
H′∈H

δH′ ∈ IRS(Γ).

(iii) Let (X, ν) be a Borel probability space. Consider an action Γ y X that is probability measure
preserving, i.e. such that for all Borel sets A ⊆ X, ν(γA) = ν(A). Define a map

st : x ∈ X 7−→ StabΓ(x) ∈ Sub(Γ).

The random stabiliser is the probability measure µ on Sub(Γ) defined by µ = st∗ν, i.e. µ(A) =
ν (st−1(A)). Then µ ∈ IRS(Γ).
It turns out that every invariant random subgroup arises from a probability measure preserving
action in this way (c.f. Proposition 2.4).

(iv) Let H 6fi Γ. Consider the action Γ y Γ/H. If Γ/H is equipped with the uniform probabil-
ity, then it is probability measure preserving. The random stabiliser is the invariant random
subgroup of (ii).

Remark 2.3. The space Sub(Γ) is compact and metrisable; it follows that every Borel probability
measure µ on Sub(Γ) is outer regular: for every Borel set A ⊆ Sub(Γ),

µ(A) = inf
U⊇A
U open

µ(U).

Proposition 2.4. Let Γ be a countable group and µ ∈ IRS(Γ). Then there is a probability space
(A, ν) and an action Γ y (A, ν) that is probability measure preserving such that the random stabiliser
of Γ y (A, ν) is µ.

Proof. First attempt. Let A be the space of pointed transitive Γ-spaces up to isomorphism; in other
words,

A = {[(X, x)] , Γ y X transitively, x ∈ X} ,

where a bijection f : (X, x) → (Y, y) is said to be an isomorphism if it is γ-invariant and satisfies
f(x) = y. Define an action Γ y A by γ · [(X, x)] = [(X, γx)], and define a probability measure ν on
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A by the following law: “choose a random subgroup H 6 Γ according to µ and output [(Γ/H,H)]”.
Let us determine the random stabiliser of Γ y (A, ν). Given H ⊆ Γ,

γ ∈ StabΓ ([(Γ/H,H)])⇐⇒ (Γ/H, γH) ∼= (Γ/H,H)
⇐⇒ ∃f : Γ/H

∼=−→ Γ/H, f(γH) = H

=⇒ StabΓ (γH) = StabΓ(H)
⇐⇒ γHγ−1 = H ⇐⇒ γ ∈ NΓ(H),

where NΓ(H) is the normaliser of H in Γ. The converse implication is aso true, so the random
stabiliser can be described as N∗µ, where N : H ∈ Sub(Γ) 7→ NΓ(H) ∈ Sub(Γ). This does not work;
we wanted to restore µ.

The reason why the above attemps fails is that there is too much symmetry: for instance, if
Γ = Z and µ = δ100Z, then the measure ν on A will almost surely pick the action Z y (Z/100Z, 0),
and the stabiliser of a point is always Z because

x · (Z/100Z, 0) = (Z/100Z, [x]) ∼= (Z/100Z, 0) .

In order to reduce the symmetry, we shall introduce a colouring on the Γ-spaces (X, x).
Second attempt. We define

A =
{

[(X, x, σ)] , Γ y X transitively, x ∈ X, σ : X → {0, 1}N
}
,

where a bijection f : (X, x, σ) → (Y, y, τ) is said to be an isomorphism if it is γ-invariant, satisfies
f(x) = y and σ = τ ◦ f . Define an action Γ y A by γ · [(X, x, σ)] = [(X, γx, σ)], and define a
probability measure ν on A by the following law: “choose a random subgroup H 6 Γ according to µ,
choose a random function σ : Γ/H → {0, 1}N uniformly at random and output [(Γ/H,H, σ)]”. Now
the random stabiliser of Γ y A is indeed µ.

2.2 Weak-∗ convergence in Prob (Sub(Γ))
Definition 2.5 (Convergence in Prob (Sub (Γ))). We equip Prob (Sub(Γ)) with the weak-∗ topology.

Explicitly, given (µn)n>1 and µ in Prob (Sub(Γ)), we say that µn w∗−−−→
n→∞

µ (we shall later omit the
mention “w∗” from the notation) if for every A ⊆ B ⊆ Γ with B finite,

µn (UA,B) −−−→
n→∞

µ (UA,B) ,

where
UA,B = {H 6 Γ, H ∩B = A} .

Note that (UA,B)A⊆B⊆Γ
|B|<∞

is a basis of open subsets of Sub(Γ) ⊆ {0, 1}Γ that are also closed.

Remark 2.6. If µ is a probability measure on a set X, then for A ⊆ B ⊆ C ⊆ X with C finite,

µ (UB,A) =
∑

D⊆C\B
µ (UC,A∪D) .

This equality is called the consistency relation for A,B,C.

Proof. Note that UB,A = ∐
D⊆C\B UC,A∪D.

Lemma 2.7. Let X be a set. Suppose given, for each A ⊆ B ⊆ X with B finite, a real number
µ (UA,B) 6 1 and assume that all the consistency relations are satisfied (c.f. Remark 2.6). Then we
can extend µ to a probability measure on X.

Proof. Use the Kolmogorov Extension Theorem.
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Proposition 2.8. (i) IRS(Γ) is closed in Prob (Sub(Γ)).

(ii) Both IRS(Γ) and Prob (Sub(Γ)) are sequentially compact.

Proof. (ii) If (µn)n>1 is a sequence of probability measures on Sub(Γ), then we can extract a subse-
quence (using a diagonal argument) such that (µn (UA,B))n>1 converges to some real number µ (UA,B)
for all A ⊆ B ⊆ Γ with B finite. It then suffices to apply Lemma 2.7.

Example 2.9. If Γ = Z, then δnZ w∗−−−→
n→∞

δ0.

Remark 2.10. We now assume that the group Γ is finitely generated, so there exists a surjective
map π : F� Γ, where F = FS for some finite set S. We define a map

θ : H ∈ Sub(Γ) 7−→ π−1(H) ∈ Sub(F).

Note that θ is injective and that Im θ is closed in Sub(F), because

Im θ = {K 6 F, Ker π 6 K} =
⋂

ω∈Kerπ
{K 6 F, ω ∈ K} =

⋂
ω∈Kerπ

UF
{ω},{ω}.

We will therefore consider Sub(Γ) as a closed subset of Sub(F) (identifying it with ⋂ω∈Kerπ U
F
{ω},{ω}).

2.3 Invariant random subgroups of finite index
Lemma 2.11. If Γ is a finitely generated group, then for all n ∈ N, the set {H 6 Γ, [Γ : H] = n} is
finite.

Proof. Note that the set {H 6 Γ, [Γ : H] = n} injects into the set of morphisms Γ → Sn (which is
finite) via the action Γ y Γ/H.

Definition 2.12 (Invariant random subgroups of finite index). Let Γ be a finitely generated group.
By Lemma 2.11, we may enumerate the finite index subgroups of Γ as (Ki)i>1. We then define:

IRSfi(Γ) =
{
µ ∈ IRS(Γ), ∃ (αi)i>1 ∈ (R+)N ,

∞∑
i=1

αiδKi = µi and
∞∑
i=1

αi = 1
}
.

Proposition 2.13. Let Γ be a finitely generated group and µ ∈ IRS(Γ). Then µ ∈ IRSfi(Γ)w∗ if and
only if there is a sequence (Xn)n>1 of finite sets with Γ-action such that

µXn
w∗−−−→

n→∞
µ,

where µXn is the random stabiliser of Γ y Xn (the set Xn being equipped with the uniform distribu-
tion).

Proof. (⇐) It is clear that if Xn is finite, then the random stabiliser µXn is in IRSfi(Γ).
(⇒) If µ ∈ IRSfi(Γ)w∗, then there is a sequence (νn)n∈N in IRSfi(Γ) such that νn w∗−−−→

n→∞
µ. For

n ∈ N, write
νn =

∞∑
i=1

αi
1
|Ci|

∑
H∈Ci

δH ,

where (Ci)i>1 is the set of conjugacy classes of finite index subgroups of Γ. Then set

λm =
(

m∑
i=1

αi

)−1 m∑
i=1

αi
1
|Ci|

∑
H∈Ci

δH .
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Hence λm w∗−−−→
m→∞

νn. Now fix m and choose integers r1, . . . , rm > 0 such that ∑m
i=1 ri = k and

minimising ∑m
i=1

∣∣∣αi − ri
k

∣∣∣; define
κk =

m∑
i=1

ri
k
· 1
|Ci|

∑
H∈Ci

δH .

Thus κk −−−→
k→∞

λm. After having fixed a representative Hi of Ci for all i, set

X =
m∐
i=1

(Γ/Hi)qri .

Then X is a finite probability space (equipped with the uniform measure) and its random stabiliser
is κk.

2.4 Stability and sequences of actions
Remark 2.14. Let E ⊆ F and consider an action F y X. Note that the local defect of X with
respect to E can be written as

LE(X) =
∑
ω∈E

P (ωx 6= x) ,

where x follows the uniform distribution on X.

Proposition 2.15. Assume that the group Γ has a finite presentation 〈S | E〉 and let π : F � Γ
be the corresponding homomorphism. Let (Xn)n>1 be a sequence of finite sets equipped with an F-
action. Assume that the sequence (µXn)n>1 of random stabilisers converges in the weak-∗ topology to
µ ∈ IRS(F).

Then LE (Xn) −−−→
n→∞

0 if and only if µ ∈ IRS(Γ).

Proof. (⇒) Let ω ∈ Ker π = 〈〈E〉〉. Write ω = ∏r
i=1 giω

εi
i g
−1
i , with gi ∈ F, ωi ∈ E and εi ∈ {±1}.

Thus

PXn (ωx 6= x) 6 PXn

(
r⋃
i=1

(
giω

εi
i g
−1
i

)
x 6= x

)
6

r∑
i=1

PXn
(
ωεii

(
g−1
i x

)
6= g−1

i x
)

=
r∑
i=1

PXn (ωεii x 6= x) =
r∑
i=1

PXn (ωix 6= x)

6 r
∑
w∈E

PXn (wx 6= x) = rLE (Xn)

−−−→
n→∞

0.

It follows that, for ω ∈ Ker π,

µXn
(
U{ω},{ω}

)
= PXn (ω ∈ StabF(x)) −−−→

n→∞
1.

But this also converges to µ
(
U{ω},{ω}

)
, so the latter is equal to 1. Hence,

µ (IRS(Γ)) = µ

 ⋂
ω∈Kerπ

µ
(
U{ω},{ω}

) = 1,

or in other words µ ∈ IRS(Γ).

Lemma 2.16. Let (Zn)n>1 be a sequence of finite sets equipped with a Γ-action (where Γ is a discrete
countable group) such that µZn

w∗−−−→
n→∞

µ ∈ IRS(Γ). Given a sequence of integers (mk)k>1 such that
mk −−−→

k→∞
∞, there is a sequence (Yk)k>1 of finite sets equipped with a Γ-action such that |Yk| = mk

and µYk
w∗−−−→
k→∞

µ.
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Proof. We use the following two ideas:

(i) If Γ y Z, with Z finite, then µZqn = µZ .

(ii) If Γ y T , with |T | � |Z|, then µZqT ≈ µZ .

More precisely, define indices (in)n>1 such that

∀k ∈ {in, . . . , in+1 − 1} , |Zn|
mk

<
1
n
.

For k > i1, write the Euclidean division of mk by |Znk |: mk = qk |Znk | + rk, with 0 6 rk < |Znk |.
Now set

Yk = Zqqknk
q Trk ,

where Trk is the trivial Γ-action on rk points. Hence |Yk| = mk and, for all A ⊆ B ⊆ Γ with B finite,

µYk (UB,A) = rk
mk

µTrk (UB,A) +
(

1− rk
mk

)
µZnk (UB,A) −−−→

k→∞
µ (UB,A) .

Proposition 2.17. Assume that the group Γ has a finite presentation 〈S | E〉. Let (Xn)n>1 be a
sequence of finite sets equipped with an F-action such that the sequence (µXn)n>1 of random stabilisers
converges in the weak-∗ topology to µ ∈ IRS(F) with LE (Xn) −−−→

n→∞
0. If we assume in addition that

IRSfi(Γ)w∗ = IRS(Γ),

then there are finite sets (Yn)n∈N equipped with a Γ-action, such that |Yn| = |Xn|, and

µYn
w∗−−−→

n→∞
µ.

Proof. By Proposition 2.15, µ ∈ IRS(Γ) = IRSfi(Γ)w∗. Therefore, by Proposition 2.13, there is a
sequence (Zn)n>1 of finite sets with a Γ-action such that µZn

w∗−−−→
n→∞

µ. The result now follows from
Lemma 2.16.

Notation 2.18. Given a group Γ with a (finite) generating set S, we let

BΓ(r) =
{
sε11 · · · s

εk
k , k 6 r, (s1, . . . , sk) ∈ Sk, (ε1, . . . , εk) ∈ {±1}k

}
.

Moreover, if A ⊆ BΓ(r), we write

Ur,A = UBΓ(r),A = {H 6 Γ, H ∩BΓ(r) = A} .

Proposition 2.19. Let Γ be a group with a finite generating set S. Given (µn)n>1 and µ in IRS(Γ),
we have

µn
w∗−−−→

n→∞
µ⇐⇒ ∀r > 1, ∀A ⊆ BΓ(r), µn (Ur,A) −−−→

n→∞
µ (Ur,A) .

2.5 Expander graphs
Remark 2.20. We wish to show that, in the context of Proposition 2.17, we have dS (Xn, Yn) −−−→

n→∞
0

(c.f. Definition 1.14). This will prove the reverse implication of Theorem 1.10: if IRSfi(Γ)w∗ =
IRS(Γ), then Γ is stable.

We first give an example showing that this does not hold without the assumption that Γ is
amenable.

Proposition 2.21. (i) If p is a prime number, then the homomorphism πp : SL2Z → SL2 (Z/p)
of reduction modulo p is surjective, and its kernel is

Γ(p) = {I + pA, A ∈M2(Z)} ∩ SL2Z.
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(ii) There are sequences (`n)n>1 and (qn)n>1 of prime numbers such that the sequence
(
`n
qn

)
n>1

is
decreasing and converges to 2.

(iii) |SL2 (Z/p)| = (p+ 1)p(p− 1).

Proof. (ii) Use the Prime Number Theorem: if pn is the numbers of prime numbers at most n, then
pn ∼ n

logn .

Definition 2.22 (Expander graphs). Let X = (V,E) be a finite graph. The Cheeger constant of X
is

h(X) = min
U⊆V
|U |6 1

2 |V |

|E (U, V \U)|
|U |

,

where E (U1, U2) is the set of edges with one endpoint in U1 and the other in U2.
We say that X is an ε-expander if h(X) > ε.
A sequence (Xn)n>1 is said to be an expanding family (or a sequence of expander graphs) if

|Xn| −−−→
n→∞

∞ and there exists ε0 > 0 such that Xn is an ε0-expander for all n.

Example 2.23. Let Cn denote the cycle graph on n vertices. Then (Cn)n∈N is not an expanding
family because h (Cn) ∼ 2

n
−→ 0.

Margulis used Kazhdan’s Property (T ) to show that, if (Xn)n>1 is a sequence of finite sets equipped
with transitive SL3Z-actions, then the graphs of the actions form an expanding family (where SL3Z
is equipped with a finite generating set).

Proposition 2.24. Equip SL2 (Z/p) with the action of SL2Z by left multiplication for all primes p.
Then the sequence (SL2 (Z/p))p prime is an expanding family (where SL2Z is equipped with a finite
generating set).

Example 2.25. Let (`n)n>1 and (qn)n>1 be sequences of prime numbers such that the sequence(
`n
qn

)
n>1

is decreasing and converges to 2. Define

Xn = SL2 (Z/`n) and Yn = SL2 (Z/qn)q8 q Trn ,

where Trn is the trivial action on rn points, with rn chosen such that |Xn| = |Yn|.
Make SL2Z act on (Xn)n>1 and (Yn)n>1 in the natural way. Then

lim
n→∞

µXn = lim
n→∞

µYn = δ{I} ∈ IRS (SL2Z) .

However, there is a constant η0 > 0 such that dS (Xn, Yn) > η0 for all n ∈ N.

Proof. Note that µXn = δΓ(`n). Since `n −−−→
n→∞

∞, it follows that

µXn
w∗−−−→

n→∞
δ{I},

and similarly for µYn because rn
|Yn| −−−→n→∞

0. To find a lower bound for dS (Xn, Yn), let fn : Yn →
Xn be a bijection. Consider a copy Zn of SL2 (Z/qn) inside Yn. Note that, in the action graph,
E (Zn, Yn\Zn) = ∅. However, since (Xn)n>1 is an expanding family by Proposition 2.24,

|E (fn (Zn) , Xn\fn (Zn))| > ε0 |fn (Zn)| > 1
16ε0 |Xn| .

It follows that dS (Xn, Yn) > ε0
16 .
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2.6 Convergence of F-spaces
Definition 2.26 (Pointed S-graphs). A pointed S-graph of radius at most r is an oriented graph
Y with a distinguished vertex y ∈ Y , where the edges are labelled by S, such that every vertex has
at most one incoming s-edge and one outgoing s-edge for all s ∈ S, and every vertex of Y is at a
distance at most r from y.

We denote by X•,6r the set of isomorphism classes of pointed S-graphs of radius at most r. This
is a finite space.

Given a set C, we denote by XC
•,6r the set of isomorphism classes of pointed S-graphs of radius

at most r with a colouring σ : Y → C.

Definition 2.27 (Convergence of F-spaces). Given a F-space (X, ν), there is a map f(X,ν) : X•,6r → R
defined by

f(X,ν) ([(Y, y)]) = P (BX(x, r) ∼= (Y, y)) ,
where x is chosen randomly according to ν and BX(x, r) is the ball of centre x and radius r in the
action graph of F y X (c.f. Definition 1.13).

Now given F-spaces (Xn)n>1 and (X, ν), we say that Xn −−−→
n→∞

X if

∀r > 1, ∀ [(Y, y)] ∈ X•,6r, fXn ([(Y, y)]) −−−→
n→∞

f(X,ν) ([(Y, y)]) .

This notion of convergence is equivalent to the convergence of random stabilisers by Proposition 2.19.
Similarly, if there are colourings σn : Xn → C and σ : X → C, then we can define Xn −−−→

n→∞
X

as before, by replacing X•,6r by XC
•,6r.

Remark 2.28. Recall from Proposition 2.4 that, given an invariant random subgroup µ ∈ IRS(Γ),
there is a canonical space (A, ν) associated to µ whose random stabiliser is µ: A = X {0,1}N• is the set
of isomorphism classes of spaces (Y, y, σ), where Y is equipped with a transitive action of F, y ∈ Y is
a distinguished point, and σ : Y → {0, 1}N is a colouring. This set X {0,1}N• is equipped with an action
of F given by ω · [(Y, y, σ)] = [(Y, ωy, σ)] and the proof of Proposition 2.4 described the construction
of a probability measure µ{0,1}N on X {0,1}N• without mentioning the σ-algebra.

To make the σ-algebra explicit, we shall equip X {0,1}N• with a metric and use the Borel σ-algebra.
We say that two spaces [(Y1, y1, σ1)] , [(Y2, y2, σ2)] ∈ X {0,1}N• are r-locally isomorphic, and we write
(Y1, y1, σ1) 'r (Y2, y2, σ2) (for r > 0) if(

B1, y1, (π ◦ σ1)|B1

) ∼= (
B2, y2, (π ◦ σ2)|B2

)
,

where Bi is the ball of centre yi and radius r in Yi, and π : {0, 1}N → {0, 1}r is the projection map.
Then we set

d ([(Y1, y1, σ1)] , [(Y2, y2, σ2)]) = exp (−r0) ,
with r0 = sup {r > 0, (Y1, y1, σ1) 'r (Y2, y2, σ2)}.

Remark 2.29. The space X {0,1}N• is compact and metrisable; it follows that µ{0,1}N is outer regular:
for every Borel set A ⊆ X {0,1}N• ,

µ(A) = inf
U⊇A
U open

µ(U).

Definition 2.30 (r-local map). Let r > 0. A Borel map f : X {0,1}N• → C (with C finite) is said to
be r-local if

f ([(X, x, σ)]) = f ([(Y, y, τ)])
whenever (X, x, σ) 'r (Y, y, τ).

Remark 2.31. If U ⊆ X {0,1}N• is open, then we can write U = ⋃
r>0 Ur, with Ur ⊆ Ur+1 open, and

where 1Ur : X {0,1}N• → {0, 1} is r-local.
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Proof. Given [(X, x, σ)] ∈ X {0,1}N• and r > 0, consider the ball of radius e−r centred at (X, x, σ):

B(X,x,σ),r =
{

(Y, y, τ) ∈ X {0,1}
N

• , (X, x, σ) and (Y, y, τ) are r-locally isomorphic
}
.

Given an open set U ⊆ X {0,1}N• , define

Ur =
⋃

B(X,x,σ),r⊆U
B(X,x,σ),r.

Then Ur is open, Ur ⊆ Ur+1, U = ⋃
r>0 Ur and 1Ur is r-local.

Remark 2.32. By Remarks 2.29 and 2.31, we have the following: if B ⊆ X {0,1}N• is Borel and ε > 0,
then:

(i) There exists an open set U ⊇ B such that µ{0,1}N(U\B) < ε
2 .

(ii) There exists r > 0 and an open set Ur ⊆ U with 1Ur r-local such that µ{0,1}N (U\Ur) < ε
2 .

Hence µ{0,1}N (B4Ur) < ε.

Lemma 2.33. Let σ : X {0,1}N• → C be a Borel map with C finite. Let ε > 0. Then there exists r > 0
and an r-local map ` : X {0,1}N• → C such that

∀c ∈ C, µ{0,1}N
(
σ−1(c)4`−1(c)

)
< ε.

Definition 2.34 (Typical points of X {0,1}N• ). The subset of typical points of X {0,1}N• is defined by

T {0,1}N• =
{

[(X, x, σ)] ∈ X {0,1}N• , σ is injective
}
.

We have µ{0,1}N
(
T {0,1}N•

)
= 1.

Remark 2.35. Let [(X, x, σ)] ∈ X {0,1}N• . Consider the action graph of F y X {0,1}N• , and equip it with
the root-colouring: the colour of [(Y, y, τ)] is τ(y). Now take the connected component of [(X, x, σ)]. If
(X, x, σ) is a typical point, then this component is a coloured pointed S-graph isomorphic to (X, x, σ).

2.7 The Elek Transfer Theorem
Proposition 2.36. Let (Xn)n>1 be a sequence of finite F-spaces. For every n > 1 and y ∈ Xn, choose
an element αn(y) ∈ {0, 1}N uniformly independently at random. This yields a random sequence(
αn : Xn → {0, 1}N

)
n>1

of colourings. Assume that

µXn
w∗−−−→

n→∞
µ ∈ IRS(F).

Let µ(Xn,αn) be the probability measure on X {0,1}N• defined as follows: choose x ∈ Xn uniformly at
random, and output (F · x, x, αn) ∈ X {0,1}N• ; let µ{0,1}N be the probability measure defined as follows:
choose H ∼ µ ∈ IRS(F), choose α : F/H → {0, 1}N uniformly at random, and output (F/H,H, α).

Then, with probability 1,
µ(Xn,αn)

w∗−−−→
n→∞

µ{0,1}N .

Proof. Fix r0 > 0 and (B, b, β) ∈ X {0,1}
r0

•,6r0 . Define

pn = Px∈Xn ((Xn, x) 'r (B, b)) and p = P(Y,y)∼µ ((Y, y) 'r (B, b)) .

Hence, µXn −−−→n→∞
µ (without colourings) means that pn −−−→

n→∞
p. Similarly, let

p′n = Px∈Xn ((Xn, x, αn) 'r (B, b, β)) and p′ = P(Y,y)∼µ ((Y, y, σ) 'r (B, b, β)) = 2−|B|r0p.
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We want to show that p′n −−−→n→∞
p′ with probability 1. Note that

p′n = pn ·
1
|An|

∑
a∈An

Ia,

where An = {a ∈ Xn, (Xn, a) 'r (B, b)} and, for a ∈ An, Ia = 1 ((Xn, a, αn) 'r (B, b, β)). Therefore
it suffices to show that

1
|An|

∑
a∈An

Ia −−−→
n→∞

2−|B|r0 ,

with probability 1 under the random choice of (αn)n>1. Note that E (Ia) = 2−|B|r0 . However, for
Xn fixed, the (Ia)a∈A are not independent, but there are only few dependencies, allowing us to use a
modified version of the Law of Large Numbers (due to Elek).

Theorem 2.37 (Elek Transfer Theorem). Let (Xn)n>1 be a sequence of finite F-spaces. Assume that

µXn
w∗−−−→

n→∞
µ ∈ IRS(F),

or equivalently, Xn −−−→
n→∞

(
X {0,1}N• , µ{0,1}N

)
. Let σ : X {0,1}N• → C be a colouring (with C finite). Then

there exists a sequence (σn : Xn → C)n>1 of colourings such that

(Xn, σn) −−−→
n→∞

(
X {0,1}

N

• , µ{0,1}N , σ
)
.

Proof. By Lemma 2.33, for every ε > 0, there exists r > 0 and an r-local map ` : X {0,1}N• → C such
that

µ{0,1}N
(
`−1(c)4σ−1(c)

)
< ε.

Since this is true for all ε > 0, it suffices to show that there is a sequence (τn : Xn → C)n>1 of
colourings such that

(Xn, τn) −−−→
n→∞

(
X {0,1}N• , µ{0,1}N , `

)
.

Step 1. For n > 1, choose αn : Xn → {0, 1}N uniformly and independently at random. By
Proposition 2.36, µ(Xn,αn) −−−→

n→∞
µ{0,1}N with probability 1. In particular, there exists a sequence(

αn : Xn → {0, 1}N
)
n>1

for which the above holds.
Step 2. We have a sequence (αn)n>1 of {0, 1}N-colourings from which we want to deduce C-

colourings. Define τn : Xn → C by

τn(x) = `

(Xn, x, αn)︸ ︷︷ ︸
∈X {0,1}

N
•

 ∈ C.
We want µ(Xn,τn) −−−→

n→∞
µ(
X {0,1}

N
• ,µ{0,1}N ,`

). Define

L : (X, x, α) ∈ X {0,1}N• 7−→ (X, x, y 7→ ` (X, y, α)) ∈ XC
• .

Then µ(Xn,τn) = L∗µ(Xn,αn). The fact that ` is r-local implies the continuity of L∗, i.e.

lim
n→∞

µ(Xn,τn) = lim
n→∞

L∗µ(Xn,αn) = L∗µ{0,1}N .

Now, since µ{0,1}N
(
T {0,1}N

)
= 1, we obtain L∗µ{0,1}N = µ(

X {0,1}
N

• ,µ{0,1}N ,`

).
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2.8 The Ornstein-Weiss Theorem for amenable groups
Example 2.38. Consider the group Z2 with its generating set S = {(1, 0), (0, 1)}. If Bn is the ball
centred at 0 and with radius n in Z2, then |Bn| = (2n+ 1)2 and |∂Bn| = 4 (2n+ 1). Therefore

|∂Bn|
|Bn|

∼ 2
n
−−−→
n→∞

0.

Hence, it is “relatively cheap” to disconnect many points in Cay (Z2, S).

Definition 2.39 (Amenable group). Let Γ be a group with a finite generating set S.

(i) A Følner sequence for Γ is a sequence (Fn)n>1 of finite subsets of Γ such that Γ = ⋃
n>1 Fn and,

for all s ∈ S±1,
|Fn4sFn|
|Fn|

−−−→
n→∞

0.

(ii) Γ is amenable if it has a Følner sequence.

Example 2.40. The free group F2 is not amenable.

Definition 2.41 (Borel equivalence relation). Let X be a compact metric space. A Borel equivalence
relation is an equivalence relation E ⊆ X ×X that is Borel as a subset of X ×X (note that it does
not matter whether X ×X is equipped with the product σ-algebra or with the Borel σ-algebra).

Notation 2.42. Let Γ y (X, ν) be a probability measure preserving action. Denote

EX = {(x, γx), x ∈ X, γ ∈ Γ} ⊆ X ×X.

Then EX is a Borel equivalence relation on X. If Γ is countable, then every equivalence class of EX
is countable.

Definition 2.43 (Hyperfinite equivalence relations). Let X be a compact metric space.

(i) An equivalence relation E ⊆ X ×X is finite if every equivalence class is finite.

(ii) An equivalence relation E ⊆ X×X is hyperfinite if there is a sequence (En)n>1 ⊆ X×X such
that En is a finite Borel equivalence relation on X, En ⊆ En+1 for all n, and E = ⋃

n>1En.

Example 2.44. Let X = {0, 1}N. Define E0 ⊆ X × X by (x, y) ∈ E0 if and only if there exists
n ∈ N such that xm = ym for all m > n. Then E0 is hyperfinite, because E0 = ⋃

n>1En, where
En = {(x, y) ∈ X ×X, ∀m > n, xm = ym}.

Definition 2.45 (Hyperfinite action). A probability measure preserving action Γ y (X, ν) is hyper-
finite if there exists X0 ⊆ X Borel such that

(i) ν (X0) = 1,

(ii) X0 is a union of orbits of Γ y (X, ν),

(iii) The equivalence relation EX0 is hyperfinite.

Theorem 2.46 (Ornstein-Weiss). Let Γ be a countable amenable group. Then any probability mea-
sure preserving action Γ y (X, ν) is hyperfinite.

Remark 2.47. (i) The original motivation (due to Ornstein-Weiss and Dye) for the Ornstein-
Weiss Theorem was to show that all monoatomic ergodic probability measure preserving actions
of amenable groups are orbit equivalent.
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(ii) The Ornstein-Weiss Theorem is usually proved as a special case of the Connes-Feldmann-Weiss
Theorem.

Proposition 2.48. Let F = FS be the free group on a finite set S. Let ε > 0. Given an action
F y (X, ν) that is probability measure preserving and hyperfinite, there is σ : X → P(S) and an
integer k > 1 such that

(i) Every connected component has at most k vertices in the graph with vertex set X, and with
edge set {(x, sx) , x ∈ X, s ∈ σ(x)}.

(ii) ν (σ−1 ({S})) > 1− ε.

Proof. Let X0 ⊆ X such that ν (X0) = 1, Γ y X0 (i.e. X0 is a union of Γ-orbits) and EX0 is
hyperfinite. There is a sequence (En)n>1 of finite Borel equivalence relations on X0, En ⊆ En+1 for
all n, and EX0 = ⋃

n>1En. Define τn : X0 → P(S) by

τn(x) = {s ∈ S, (x, sx) ∈ En} .

Note that X0 = ⋃
n>1 τ

−1
n ({S}), and the sequence (τ−1

n ({S}))n>1 is increasing; it follows that

ν
(
τ−1
n ({S})

)
−−−→
n→∞

ν (X0) = 1.

In particular, there exists N > 1 such that ν
(
τ−1
N ({S})

)
> 1 − ε

2 . Consider the graph with vertex
set X and with edge set {(x, sx) , x ∈ X, s ∈ τN(x)}. All its components are finite, but there may
not be a uniform bound on the size of components. For k > 1, let

Lk =
{

(x1, x2) ∈ EN , [x1]EN 6 k
}
.

Again, EN = ⋃
k>1 Lk. Consider

σk(x) = {s ∈ S, (x, sx) ∈ Lk} .

Then τ−1
N ({S}) = ⋃

k>1 σ
−1
k ({S}), so

ν
(
σ−1
k ({S})

)
−−−→
k→∞

ν
(
τ−1
N ({S})

)
> 1− ε

2 ,

so there exists K > 1 such that ν
(
σ−1
K ({S})

)
> 1− ε.

2.9 The Newman-Sohler-Elek Theorem
Theorem 2.49 (Newman-Sohler-Elek). Let Γ = 〈S | E〉 be a finitely generated amenable group,
(Xn)n>1 and (Yn)n>1 be sequences of finite Γ spaces with |Xn| = |Yn|. Assume that

lim
n→∞

µXn = lim
n→∞

µYn = µ ∈ IRS(Γ).

Then dS (Xn, Yn) −−−→
n→∞

0, where dS is the distance introduced in Definition 1.14.

Proof. We have an action F y
(
X {0,1}N• , µ{0,1}N

)
, with µ(

X {0,1}
N

• ,µ{0,1}N

) = µ. Since µ ∈ IRS(Γ), there

exists A ⊆ X {0,1}N• with µ{0,1}N(A) = 1 and µ(A,µ{0,1}N) = µ, such that Γ y
(
A, µ{0,1}N

)
. Now,

lim
n→∞

Xn = lim
n→∞

Yn =
(
A, µ{0,1}N

)
.

By the Ornstein-Weiss Theorem (Theorem 2.46), the action Γ y
(
A, µ{0,1}N

)
is hyperfinite. There-

fore, given ε > 0, there is σ : A → P(S) and k > 1 as in Proposition 2.48. We now think of P(S)

14



as a set of colours and use the Elek Transfer Theorem (Theorem 2.37) twice: we obtain sequences
(σn : Xn → P(S))n>1 and (τn : Yn → P(S))n>1 such that

lim
n→∞

(Xn, σn) = lim
n→∞

(Yn, τn) =
(
A, µ{0,1}N , σ

)
.

By (∗) with radius 0, we obtain

lim
n→∞

|σ−1
n (S)|
|Xn|

= lim
n→∞

|τ−1
n (S)|
|Yn|

= µ{0,1}N
(
σ−1(S)

)
> 1− ε.

By (∗) with radius k, almost all connected components are of size at most k in the graph with vertex
set Xn and edge set {(x, sx) , x ∈ Xn, s ∈ σn(x)}, and similarly for Yn. This yields

dS (Xn, Yn) 6 2 |S| ε

for n large enough.

Remark 2.50. Work of Elek and Szalo shows that Theorem 2.49 is actually a characterisation of
amenability.

Corollary 2.51. Let Γ = 〈S | E〉 be a finitely generated amenable group. If IRSfi(Γ)w∗ = IRS(Γ),
then Γ is stable.

Proof. If Γ is not stable, then there exists an ε0 > 0 and a sequence (Xn)n>1 of finite F-spaces such
that LE (Xn) < 1

n
and GE (Xn) > ε0. Since IRS(F) is compact (by Proposition 2.8), we can replace

(Xn)n>1 by a subsequence such that (µXn)n>1 converges to some µ ∈ IRS(F). By Proposition 2.15,
µ ∈ IRS(Γ) because LE (Xn) −−−→

n→∞
0. By Proposition 2.17, since IRSfi(Γ)w∗ = IRS(Γ), there is

a sequence (Yn)n>1 of Γ-spaces such that |Yn| = |Xn| and µYn −−−→n→∞
µ. Now, by Theorem 2.49,

dS (Xn, Yn) −−−→
n→∞

0, so ε0 6 GE (Xn) −−−→
n→∞

0, a contradiction.

3 Examples of stable groups

3.1 Stability of Zd

Definition 3.1 (Almost normal subgroup, profinitely closed subgroup). Let Γ be a group and let
H 6 Γ be a subgroup.

(i) H is almost normal if [Γ : NΓ(H)] <∞, where NΓ(H) = {γ ∈ Γ, γHγ−1 = H}.

(ii) H is profinitely closed if H = ⋂
H6K6fiΓ K.

Proposition 3.2. Let Γ be an amenable group. Assume that Sub(Γ) is countable and every almost
normal subgroup of Γ is profinitely closed. Then Γ is stable.

Proof. By Corollary 2.51, it suffices to show that, given µ ∈ IRS(Γ), we have µ ∈ IRSfi(Γ)w∗. Since
Sub(Γ) is countable, we can write

µ =
∑
C∈C

αC
1
|C|

∑
H∈C

δH

for some (αC)C∈C nonnegative such that ∑C∈C αC = 1, where C is the set of all conjugacy classes of
subgroups of Γ which are almost normal.

It is therefore enough to show that 1
|C|
∑
H∈C δH ∈ IRSfi(Γ)w∗ for all C ∈ C. But H is profinitely

closed by assumption, so there are subgroups Ki Efi NΓ(H) 6fi Γ for i ∈ I, with H = ⋂
i∈I Ki.

Hence, if
νi = 1

[Γ : NΓ(H)]
∑

g∈Γ/NΓ(H)
δgKig−1 ,

then νi −−−→
i→∞

1
|C|
∑
g∈Γ/NΓ(H) δgHg−1 .
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Corollary 3.3. Zd is stable.

Proof. We know that Zd is amenable, Sub
(
Zd
)
is countable. Given H 6 Zd, we can write H =

m1Z⊕ · · · ⊕m`Z with Zd = H ⊕ Zr after a change of basis in Zd. If Hi = m1Z⊕ · · · ⊕m`Z⊕ (iZ)r
for i > 1, then H 6 Hi 6fi Zd and H = ⋂

i>1Hi, so we can apply Proposition 3.2.

3.2 Stability of virtually polycyclic groups
Definition 3.4 (Polycyclic group). A group Γ is polycyclic if there is a sequence

1 = Γ0 E Γ1 E Γ2 E · · · E Γn = Γ,

such that Γi+1/Γi is cyclic for all 0 6 i < n.
The Hirsch length of Γ, denoted by h(Γ), is defined to be the number of infinite cyclic factors in

the above sequence.

Example 3.5. (i) Finitely generated nilpotent groups are polycyclic.

(ii) D∞ is polycyclic.

Proposition 3.6. Let Γ be a polycyclic group.

(i) Every subgroup H 6 Γ is finitely generated. In particular, Sub(Γ) is countable.

(ii) If Γ is infinite, then there is a subgroup A 6 Γ such that A ∼= Zr for some r > 1.
Proposition 3.7. If 1→ N → Γ→ Q→ 1 is an exact sequence of polycyclic groups, then

h(Γ) = h(N) + h(Q).

Definition 3.8 (LERF group). A group is said to be LERF if every finitely generated subgroup is
profinitely closed.

Example 3.9. Free groups are LERF.

Theorem 3.10 (Maltsev). Polycyclic groups are LERF.

Proof. Let Γ be a polycyclic group. Note that all subgroups of Γ are finitely generated, so we want
to show that, if H 6 Γ, then H = ⋂

H6K6fiΓ K.
Let g ∈ Γ\H. We want to construct H 6 K 6fi Γ such that g 6∈ K. If Γ is abelian, this is the

proof of Corollary 3.3. If h(Γ) = 0, the result is clear. We proceed by induction on h(Γ), assuming
that h(Γ) > 1. By Proposition 3.6, there exists A E Γ such that A ∼= Zr for some r > 1.

We claim that there exists m > 1 such that

g 6∈ HAm.

If this were false, then in particular g ∈ HA, so we could write g = ha with h ∈ H and a ∈ A. Since
g 6∈ H, a 6∈ H ∩ A. Hence, we have

a 6∈ H ∩ A 6 A.

By the abelian case, there exists H ∩A 6 B 6fi A such that a 6∈ B. Since [A : B] <∞, there exists
m > 1 such that Am 6 B. By assumption, g ∈ HAm, so we can write g = h1a1 with h1 ∈ H and
a1 ∈ Am 6 B. It follows that ha = g = h1a1, so

a1a
−1 = h−1

1 h ∈ A ∩B 6 B,

so a ∈ B, a contradiction.
Therefore, there exists m > 1 such that g 6∈ HAm. Now we have

gAm 6∈ HAm/Am 6 Γ/Am.

Since h (Γ/Am) = h(Γ)− h (Am) < h(Γ), the induction hypothesis implies that there is HAm/Am 6
K/Am 6fi Γ/Am such that gAm 6∈ K/Am. In particular, g 6∈ K and H 6 K 6fi Γ.
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Corollary 3.11. Polycyclic groups are stable.
In fact, virtually polycyclic groups are stable.

Example 3.12. For all n ∈ Z, the group BS(1, n) = 〈x, y | yxy−1 = xn〉 is stable.

3.3 Sufficient condition for instability
Definition 3.13 (Sofic group). Let Γ be a finitely generated group equipped with a surjective homo-
morphism π : F→ Γ, where F = FS for some finite set S. We say that Γ is sofic if

δKerπ = δ1Γ ∈ IRSfi(F)w∗.

Equivalently, Γ is sofic if there is a sequence (Xn)n>1 of finite F-sets such that

µXn −−−→n→∞
δ1Γ .

It is an open problem to know whether or not there exist non-sofic groups.

Definition 3.14 (Residually finite group). A group Γ is said to be residually finite if⋂
KEfiΓ

= 1Γ.

Proposition 3.15. Residually finite groups are sofic.

Proposition 3.16. If a group Γ is sofic but not residually finite, then Γ is not stable.

Proof. Since Γ is not residually finite, there exists γ0 ∈
(⋂

K6fiΓ K
)
\{1}. Pick w0 ∈ F such that

π (w0) = γ0, and denote by `0 the length (relative to S) of w0. Since Γ is sofic, there is a sequence
(Xn)n>1 of finite F-spaces such that

µXn −−−→n→∞
δKerπ.

We consider balls of radius `0, and we define

An = {x ∈ Xn, (Xn, x) '`0 (Γ, 1)} .

Therefore |An||Xn| −−−→n→∞
1. Let Bn be a maximal subset of An such that the balls (B (x, `0))x∈Bn are

disjoint. By maximality, |Bn| > (2 |S|)−2`0 |An|; it follows that for n large enough,

|Bn| >
1
2 (2 |S|)−2`0︸ ︷︷ ︸

C

|Xn| .

But for every x ∈ Bn, we have w0x 6= x because π (w0) 6= 1. Hence, if Y is a finite Γ-space with
|Y | = |Xn|, and y ∈ Y , then [Γ : StabΓ(y)] < ∞, so γ0 ∈ StabΓ(y), i.e. γ0y = y, so w0y = y. It
follows that

GE (Xn) > dS (Xn, Y ) > C > 0,
but LE (Xn) −−−→

n→∞
0. Hence, Γ is not stable.

3.4 Instability of BS(2, 3)
Definition 3.17 (Baumslag–Solitar groups). We define BS(m,n) = 〈x, y | yxmy−1 = xn〉.

Definition 3.18 (Metabelian group). A group Γ is said to be metabelian if one of the following two
equivalent assertions is satisfied:

(i) Γ is nilpotent of class at most 2.
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(ii) There is an exact sequence 1→ A1 → Γ→ A2 → 1 with A1, A2 abelian.

Proposition 3.19. BS(2, 3) is free by metabelian, i.e. there is an exact sequence

1→ F→ BS(2, 3)→ Q→ 1,

with F free and Q metabelian.

Proof. Write Γ = BS(2, 3) = 〈x, y | yx2y−1 = x3〉. Consider Γ′′ E Γ. It is clear that Q = Γ/Γ′′ is
metabelian, so it suffices to prove that Γ′′ is free. Define ϕ : Γ→ GL2Q by

x 7→
(

1 1
0 1

)
and y 7→

(
3
2 0
0 1

)
.

This gives a well-defined group homomorphism because ϕ(y)ϕ(x)2ϕ(y)−1 = ϕ(x)3.
Moreover, Imϕ is included in the subgroup T ⊆ GL2Q of upper triangular matrices. But

T ′ ⊆
{(

1 c
0 1

)
, c ∈ Q

}
∼= Q,

so T ′ is abelian and T is metabelian. It follows that Imϕ = Γ/Kerϕ is metabelian, so

Γ′′ ⊆ Kerϕ.

Now consider the action Γ′′ y Γ/ 〈x〉. Note that this action is free: if γ ∈ Γ′′, then

γγ0 〈x〉 = γ0 〈x〉 =⇒ γ−1
0 γγ0 〈x〉 = 〈x〉 =⇒ γ−1

0 γγ0 ∈ 〈x〉 ∩ Γ′′ ⊆ 〈x〉 ∩Kerϕ = {1}.

Note that Γ can be written as the HNN extension Γ = Z∗φ, where φ : 3Z
∼=−→ 2Z, and the action

Γ y Γ/ 〈x〉 corresponds to Z∗φ y Z ∗φ /Z. Bass-Serre theory tells us that Γ′′ y Γ/ 〈x〉 is a free
action on a tree by graph automorphisms without edge inversions, so Γ′′ is a free group; in fact,
Γ′′ ∼= Fℵ0 .

Definition 3.20 (Residually amenable group). A group Γ is said to be residually amenable if there
is a sequence (Hn)n>1 of normal subgroups of Γ such that ⋂n>1Hn = {1}, Hn+1 6 Hn and Γ/Hn is
amenable for all n > 1.

Proposition 3.21. Free by metabelian groups are residually solvable hence residually amenable.

Sketch of proof. Consider an exact sequence 1→ F→ Γ→ Q→ 1.
First note that F is residually finite: take a freely generating set S = {s1, s2, . . . } for F and

let w = sε1i1 · · · s
εk
ik
, εj ∈ {±1}. Consider the line graph X with (k + 1) vertices v0, . . . , vk, where

the vj−1 and vj are linked by an edge labelled by sij , going towards vj if εj = 1, or towards vj−1
otherwise. This graph can be completed to an action of F on X. This gives a group homomorphism
ρw : F→ SX with ρw(w) 6= 1. Hence, Ker ρw Efi F and w 6∈ Ker ρw, so F is residually finite.

Iwasawa used this idea to prove a stronger result: if w ∈ F\{1}, then there exists r > 1, n > 1
and

ρw : F→ UTr (Z/pn)
such that ρw(w) 6= 1, where UTr (Z/pn) is the subgroup of GLr (Z/pn) of upper triangular matrices
with ones on the diagonal (c.f. Robinson for more details).

Now UTr (Z/pn) is a finite p-group, so it is nilpotent and therefore solvable. Now take ρw : F→
UTr (Z/pn) as above. Since UTr (Z/pn) is step-` solvable for some `, we have F(`) 6 Ker ρw. But
w 6∈ Ker ρw, so w 6∈ F(`). Hence,

∞⋂
`=1

F(`) = {1},

and F/F(`) is solvable.
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Proposition 3.22. Residually amenable groups are sofic.

Sketch of proof. Let Γ be residually amenable. Take a radius r > 1. Then there exists H E Γ such
that Γ/H is amenable and Cay(Γ) 'r Cay (Γ/H). Since Γ/H is amenable, it has a Følner sequence
(F`)`>1. Take ` very large and consider the action FS y F`. Then almost all r-balls in F` look like
the r-ball in Γ/H, which is the r-ball in Γ.

Corollary 3.23. BS(2, 3) is sofic.

Lemma 3.24. Let ∆ be a finitely generated group and let α : ∆→ ∆ be a surjective homomorphism.
Then for every finite set X and ρ : ∆→ SX , we have Kerα 6 Ker ρ.

Proof. Set AX = Hom (∆,SX), and define α∗ : AX → AX by α∗(ϕ) = ϕ ◦ α. Since α is surjective,
α∗ is injective. But |AX | < ∞ because ∆ is finitely generated, so α∗ is also surjective. Therefore,
ρ = ϕ ◦ α for some ϕ ∈ AX , so Kerα 6 Ker ρ.

Proposition 3.25. BS(2, 3) is not residually finite.

Proof. Write Γ = BS(2, 3) = 〈x, y | yx2y−1 = x3〉. Define α : Γ → Γ by x 7→ x2 and y 7→ y. This is
a surjective homomorphism (because y = α(y) ∈ Imα and x = α (yxy−1x−1) ∈ Imα). However, we
have

α
((
yxy−1x−1

)2
x−1

)
= 1,

and (yxy−1x−1)2
x−1 by Britton’s Lemma, so α is not injective. Therefore, Γ is not Hopf, and hence

not residually finite (by Lemma 3.24).

Corollary 3.26. BS(2, 3) is not stable.

Proof. This follows from Proposition 3.16.

3.5 The lamplighter group
Proposition 3.27. The lamplighter group Z/2 o Z is metabelian hence amenable.

Theorem 3.28 (Levit-Lubotzky). Let Γ = Z/2 o Z. Then IRSfi(Γ)w∗ = IRS(Γ).

Sketch of proof. The main ingredients of the proof are:

(i) Weiss’ Monotilability Theorem: if Γ is amenable and residually finite (or solvable), then there
exists a Følner sequence (Fn)n>1 with |Fn| < ∞ and a sequence (Hn)n>1 of finite-index sub-
groups such that each Fn is a transversal for the left cosets of Hn in Γ.

(ii) Lindenstrauss’ Pointwise Ergodic Theorem.

Conjecture 3.29. If Γ is a metabelian group, then IRSfi(Γ)w∗ = IRS(Γ).

Remark 3.30. There are step-3 solvable groups that are not stable, for instance

Γ =




1 ∗ ∗ ∗
0 pn ∗ ∗
0 0 pm ∗
0 0 0 1

 ∈ GL4

(
Z
[

1
p

])
, m, n ∈ Z

 .
Remark 3.31. Let Γ = Z/2 o Z. Consider the map

F : x ∈ {0, 1}Z 7−→
⊕
n∈Z
xn=1

Z/2 ∈ Sub(Γ).

Take the product measure ν on {0, 1}Z. Then the pushforward F∗ν ∈ Prob (Sub(Γ)) is an invariant
random subgroup and has no atoms.
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Remark 3.32. The lamplighter group Z/2 o Z is not finitely presented. However, there are two
(equivalent) ways in which we can give a meaning to stability:

• Definition 1.7 does not rely on finite presentability.

• We may modify Definition 1.14 and say that Γ is stable if for all ε > 0, there exists δ > 0 and
a finite subset E0 ⊆ E such that for all finite F-space X with LE0(X) < δ, there exists a finite
Γ-space Y with |Y | = |X| and d(X, Y ) < ε.

4 Open questions
Question 4.1. Are metabelian groups stable?

Question 4.2. Are amenable LERF groups stable?

Definition 4.3 (Flexible stability). Given σ ∈ Sn, τ ∈ SN , n 6 N , we define

d(σ, τ) = 1
N

(|{x ∈ {1, . . . , n} , σ(x) 6= τ(x)}|+ (N − n)) .

We say that Γ = 〈S | E〉 is flexibly stable if given f : F → Sn with LE(f) small, there is n 6 N 6
(1 + ε)n and h : Γ→ SN such that d(h, f) is small.

Theorem 4.4 (Becker-Lubotzky). SLn(Z) is not stable for n > 3.

Question 4.5. Is SLn (Z) flexibly stable?

Theorem 4.6 (Bowen-Burton). If SL5(Z) is flexibly stable, then there exists a non-sofic group.

Question 4.7. Study stability when Sn is replaced by
(
U(n), 1√

n
‖·‖2

)
.
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