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1 Definitions, examples and motivation

1.1 Metric spaces
Definition 1.1 (Metric space). A metric space is a set M together with a metric, i.e. a function
d : M ×M → R+ such that
(i) ∀x ∈M, d(x, x) = 0,

(ii) ∀x, y ∈M, d(x, y) = d(y, x),

(iii) ∀x, y, z ∈M, d(x, z) 6 d(x, y) + d(y, z),

(iv) ∀x, y ∈M, d(x, y) = 0 =⇒ x = y.
If d satisfies conditions (i), (ii) and (iii) only, it is called a semimetric.
Example 1.2 (Graphs and graph distance). A graph is a pair G = (V,E), where V is a set and
E ⊆ V (2) = {ρ ⊆ V, |ρ| = 2}. Elements of V are called vertices and elements of E are called edges.
Given e = {x, y} ∈ E (which we shall also denote by xy or yx), we say that x, y are the end vertices
of e. We also write x ∼ y to mean that xy ∈ E.

A walk in G from x0 to xn is a sequence x0, x1, . . . , xn of vertices of G such that xi−1 ∼ xi for all
1 6 i 6 n. The length of the walk is n. If xi 6= xj whenever 1 < j − i < n, the walk is called a path
from x0 to xn. We say that G is connected if there is a walk (equivalently, a path) between any two
vertices of G.

The graph distance dG on V is defined as follows: dG(x, y) is the minimal length of a path in G
from x to y.

For example:
• Kn is the complete graph on n vertices (i.e. any two vertices are connected).

K5
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The graph distance is given by dKn(x, y) =
0 if x = y

1 otherwise
.

• Pn is the path of length n: V = {x0, x1, . . . , xn} and E = {xi−1xi, 1 6 i 6 n}.

P4

The graph distance is given by dPn (xi, xj) = |i− j|.

• Cn is the cycle of length n: V = {x1, . . . , xn} and E = {xixi+1, 1 6 i < n} ∪ {x1xn}.

C6

• Bn is the rooted binary tree of depth n.

B2

• Hn is the Hamming cube: V = {0, 1}n and x ∼ y iff |{i, xi 6= yi}| = 1.
The graph distance is given by dHn(x, y) = |{i, xi 6= yi}|.

Example 1.3 (Word metric on a group). Let G be a group generated by some subset S. We always
assume that e 6∈ S and that S is symmetric: x−1 ∈ S for all x ∈ S. The word metric on G is defined
by

dG(x, y) = min
{
n ∈ N, ∃a1, . . . , an ∈ S, x−1y = a1 · · · an

}
.

The Cayley graph C(G,S) has vertex set G and x ∼ y iff x−1y ∈ S. The graph distance on G is
exactly the word metric.

Example 1.4 (Cut semimetric). A cut on a set M is a partitioning of M into S and M\S. The
corresponding cut semimetric dS is given by

dS(x, y) =
0 if x, y ∈ S or x, y ∈M\S

1 otherwise
.

Definition 1.5 (Normed space). A normed space is a vector space V over K = R or C equipped
with a norm, i.e. a function ‖·‖ : V → R+ such that

(i) ∀x ∈ V, ∀λ ∈ K, ‖λx‖ = |λ| · ‖x‖,

(ii) ∀x, y ∈ V, ‖x+ y‖ 6 ‖x‖+ ‖y‖,
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(iii) ∀x ∈ V, ‖x‖ = 0 =⇒ x = 0.

Then d(x, y) = ‖x− y‖ defines a metric on V . If V is complete, then it is called a Banach space.
If ‖·‖ satisfies conditions (i) and (ii) only, then it is called a seminorm.
Given a normed space V , we define:

• The closed unit ball of V : BV = {x ∈ V, ‖x‖ 6 1},

• The unit sphere of V : SV = {x ∈ V, ‖x‖ = 1}.

Example 1.6 (Classical sequence spaces). • `np is the space Rn together with the norm ‖·‖p for
1 6 p 6∞.

• `p =
{

(xi)i>1 ,
∑∞
i=1 |xi|

p <∞
}
together with the norm ‖·‖p for 1 6 p <∞.

• `∞ =
{

(xi)i>1 bounded
}
together with the norm ‖·‖∞.

• More generally, for a set S, `∞(S) is the space of bounded functions S → R together with the
norm ‖·‖∞.

• c0 =
{

(xi)i>1 , xi −−−→i→∞
0
}
, a closed subspace of `∞.

Example 1.7 (Classical function spaces). Let (Ω,F , µ} be a measure space.

• Lp(µ) = {f : Ω→ R measurable,
∫

Ω |f |
p dµ <∞} together with the norm ‖·‖p.

• L∞(µ) = {f : Ω→ R measurable and essentially bounded} together with the norm ‖·‖∞.

• If Ω = [0, 1] and µ is the Lebesgue measure, we write Lp for Lp(µ).

• For a compact space K, C(K) is the space of continuous functions K → R, a closed subspace
of `∞(K).

Definition 1.8 (Hilbert space). An inner product space is a vector space V with an inner product
〈·, ·〉 : V × V → R (symmetric, bilinear, positive definite). Then V becomes a normed space with
‖x‖ =

√
〈x, x〉. If V is complete for this norm, it is called a Hilbert space.

1.2 Isometric, Lipschitz and bilipschitz embeddings
Definition 1.9 (Isometric, Lipschitz and bilipschitz embeddings). Let f : M → N be a map between
metric spaces.

(i) f is isometric (or an isometric embedding) if d (f(x), f(y)) = d(x, y) for all x, y ∈M .

(ii) f is Lipschitz if there exists b > 0 such that d (f(x), f(y)) 6 b · d(x, y) for all x, y ∈ M . The
Lipschitz constant of f is defined by

Lip(f) = sup
x6=y

d (f(x), f(y))
d(x, y) .

(iii) f is a bilipschitz embedding if there exist a, b > 0 such that

a · d(x, y) 6 d (f(x), f(y)) 6 b · d(x, y), (∗)

for all x, y ∈M . The distortion of f is defined by

dist(f) = inf
{
b

a
, a, b > 0, (∗) holds for f

}
.
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Remark 1.10. (i) If f : M → N is a bilipschitz embedding with a = b, then f is a scaled isometric
embedding.

(ii) The definitions of Lipschitz and bilipschitz embeddings also make sense for semimetrics.

(iii) If f is a bilipschitz embedding satisfying (∗), then f is Lipschitz with Lip(f) 6 b; moreover f
is injective and f−1 : f(M)→M is Lipschitz with Lip (f−1) 6 1

a
. We have in addition

dist(f) = Lip(f) Lip
(
f−1

)
.

Definition 1.11 (Morphisms of normed spaces). Let T : X → Y be a linear map between normed
spaces.

(i) The following assertions are equivalent:

(a) T is continuous.
(b) T is bounded, i.e. there exists C > 0 such that ‖Tx‖ 6 C ‖x‖ for all x ∈ X.
(c) T is Lipschitz.

In that case, we define ‖T‖ = Lip(T ) = supx∈BX ‖Tx‖.

(ii) We say that T : X → Y is an isomorphism if T is a bijection, and both T and T−1 are bounded.

(iii) We say that T is an isomorphic embedding or an into isomorphism if one of the following two
equivalent assertions is satisfied:

(a) T is an isomorphism between X and T (X).
(b) T is bilipschitz.

(iv) We say that T is an isometric (isomorphic) embedding if ‖Tx‖ = ‖x‖ for all x ∈ X.

Notation 1.12. Let X, Y be normed spaces.

(i) We write X ↪→C Y , and we say that X C-embeds into Y if there is an isomorphic embedding
T : X → Y with dist(T ) = ‖T‖ · ‖T−1‖ = C.

(ii) Hence X ↪→1 Y means that there is an isometric embedding X → Y .

(iii) We write X ∼ Y if X, Y are isomorphic.

(iv) We write X ∼= Y if X, Y are isometrically isomorphic.

1.3 Examples of embeddings
Example 1.13. (i) `np ↪→1 `p by (xi)16i6n 7−→ (x1, . . . , xn, 0, . . . , 0, . . . ).

(ii) `p ↪→1 Lp by (xi)i>1 7−→
∑∞
i=1

xi
λ(Ai)1/p1Ai, where (Ai)i>1 are pairwise disjoint measurable sets of

positive measure.

Proposition 1.14. If (Ω, µ) is a measure space and X ⊆ Lp (Ω, µ) is separable, then X ↪→1 Lp.

Proposition 1.15. For all n ∈ N and for all 1 6 p 6∞, `n2 ↪→1 Lp.
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Proof. First case: 1 6 p <∞. Let B = B`n2
and S = S`n2 and let λ be the Lebesgue measure on B.

Since λ is rotation invariant, the value of∫
B
|〈x, ω〉|p dλ(ω)

is the same for all x ∈ S – call it α. Define T : `n2 → Lp(B, λ) by

(Tx)(ω) = 〈x, ω〉
α1/p .

Then T is linear and
‖Tx‖pp =

∫
B

|〈x, ω〉|p

α
dλ(ω) = ‖x‖p2

for all x ∈ `n2 . Hence `n2 ↪→1 Lp (B, λ) ↪→1 Lp by Proposition 1.14.
Second case: p =∞. Use Proposition 1.17 below and Example 1.13.(ii).

Definition 1.16 (Dual space). Let X be a normed space. The dual space X∗ of X is defined by

X∗ = B (X,R) = {f : X → R linear and bounded} ;

it is equipped with the norm defined by ‖f‖ = supx∈BX ‖f(x)‖.
By the Hahn-Banach Theorem, for all x ∈ X, there exists f ∈ X∗ such that ‖f‖ = 1 and

f(x) = ‖x‖. It follows that
‖x‖ = max

g∈SX∗
g(x).

Proposition 1.17. Let X be a separable normed space. Then X ↪→1 `∞.

Proof. Let {xn, n ∈ N} be dense in X. For all n ∈ N, choose fn ∈ SX∗ such that fn (xn) = ‖xn‖ (by
Hahn-Banach). Define T : X → `∞ by

Tx = (fn(x))n∈N .

Given x ∈ X, we have
‖fn(x)‖ 6 ‖fn‖ · ‖x‖ = ‖x‖

for all x, so T is well-defined, and it is linear and bounded with ‖T‖ 6 1. Moreover, for n ∈ N,
‖Txn‖ = ‖xn‖, so T is isometric on a dense subset, and it follows by continuity that T is isometric.

Remark 1.18. The argument of Proposition 1.17 shows that, for any normed space X, there is a
set S such that X ↪→1 `∞(S) (for instance, take S = SX∗).

Corollary 1.19. Let M be a finite metric space. If M embeds into L2 with distortion 6 D, then M
embeds into Lp with distortion 6 D for all 1 6 p 6∞.

Proof. This is a consequence of Proposition 1.15.

Remark 1.20. Given a finite subset M of L1 (Ω, µ), a natural idea to embed M into R would be to
consider f 7→

∫
Ω f dµ. Then we would have∣∣∣∣∫

Ω
f dµ−

∫
Ω
g dµ

∣∣∣∣ 6 ∫
Ω
|f − g| dµ,

with equality if and only if f 6 g or g 6 f . This idea leads to the following proposition.

Proposition 1.21. If M is an n-element subset of L1 (Ω, µ), then M ↪→1 `
n!
1 .
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Proof. Let M = {f1, . . . , fn}. There exists a partition Ω = ∐
π∈Sn Ωπ of Ω such that

Ωπ ⊆
{
ω ∈ Ω, fπ(1)(ω) 6 fπ(2)(ω) 6 · · · 6 fπ(n)(ω)

}
.

Then

‖fi − fj‖ =
∫

Ω
|fi − fj| dµ =

∑
π∈Sn

∫
Ωπ
|fi − fj| dµ =

∑
π∈Sn

∣∣∣∣∫
Ωπ
fi dµ−

∫
Ωπ
fj dµ

∣∣∣∣ .
Now define T : M → `n!

1 by Tfi =
(∫

Ωπ fi dµ
)
π∈Sn

; the above computation shows that T is an
isometric embedding.

Example 1.22. (i) The cycle C4 embeds bilipschitzly into `2
2 with distortion

√
2, but it does not

embed isometrically. This is because `2 has the unique midpoint property: for all x, y ∈ `2,
there is at most one point y ∈ `2 such that

d(x, y) = d(y, z) = 1
2d(x, z).

C4 does not have this property.

(ii) Any n-element set in a Hilbert space embeds isometrically into `n−1
2 , but we cannot do better in

general. However, we shall prove that for any ε > 0, there exists C > 0 such that any n-element
set in a Hilbert space embeds into `m2 , where m = c log n, with distortion less than 1 + ε.

Remark 1.23. If M is a finite metric space, N is a metric space and |N | > |M |, then M embeds
bilipschitzly into N .

Definition 1.24 (Uniformly bilipschitz embeddings). Given families (Mα)α∈A and (Nα)α∈A of metric
spaces, embeddings fα : Mα → Nα are called uniformly bilipschitz if

sup
α∈A

dist (fα) <∞.

1.4 The sparsest cut problem
Definition 1.25 (Sparsest cut problem). Let G = (V,E) be a finite connected graph. We are given
two functions:

• The capacity C : E → R+,

• The demand D : V × V → R+.

A cut of G is a partioning (S, V \S) of V . The capacity and the demand of the cut are defined by

C (S, V \S) =
∑
uv∈E
u∈S
v 6∈S

C(uv) and D (S, V \S) =
∑
u∈S
v 6∈S

D(u, v)

respectively. If D (S, V \S) 6= 0, the sparsity of the cut is C(S,V \S)
D(S,V \S) .

The problem is to minimize the sparsity over all cuts. This is NP -hard.

Remark 1.26. Here is a reformulation of the sparsest cut problem: minimize∑
uv∈E C(uv)dS(u, v)∑
u,v∈V D(u, v)dS(u, v)

over all cuts with nonzero demand, where dS is the cut semimetric (c.f. Example 1.4).
We denote by ϕ∗(C,D) this minimum.
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To linearize this problem, we try instead to minimize the quantity∑
uv∈E

C(uv)d(u, v)

over all semimetrics d satisfying ∑u,v∈V D(u, v)d(u, v) = 1. This is a linear programming problem.
We denote by ϕ(C,D) the minimum and dmin a semimetric that achieves it.

We have clearly ϕ(C,D) 6 ϕ∗(C,D).

Lemma 1.27. Let (M,d) be a finite semimetric space. Then (M,d) embeds isometrically into L1 if
and only if d is a nonnegative linear combination of cut semimetrics.

Proof. Note that, by Example 1.13 and Proposition 1.21, (M,d) embeds isometrically into L1 if and
only if it embeds isometrically into `k1 for some integer k.

(⇐) We assume that there are cuts (Si,M\Si)16i6k and nonnegative reals (αi)16i6k s.t.

d =
k∑
i=1

αidSi .

Define
f : x ∈M 7−→ (αi1Si(x))16i6k ∈ `

k
1,

and check that ‖f(x)− f(y)‖1 = d(x, y).
(⇒) Assume that there is an isometric embedding f : M → `k1 for some k ∈ N. For 1 6 i 6 k,

enumerate the set {f(x)i, x ∈M} as βi1 < · · · < βimi and let

Sij = {x ∈M, f(x)i < βij}

for 1 6 j 6 mi. Now fix x, y ∈ M and 1 6 i 6 k. Suppose that f(x)i = βij1 6 f(y)i = βij2 . Hence
x ∈ Sij for j > j1 and y ∈ Sij for j > j2, which means that

dSij(x, y) = 1⇐⇒ j1 < j 6 j2.

Therefore
mi∑
j=2

(βi,j − βi,j−1) dSij(x, y) =
j2∑

j=j1+1
(βi,j − βi,j−1) = βi,j2 − βi,j1 = |f(x)i − f(y)i| ,

so that
k∑
i=1

mi∑
j=2

(βi,j − βi,j−1) dSij(x, y) = ‖f(x)− f(y)‖1 = d(x, y).

Theorem 1.28. Assume that the vertex set V together with the minimizing semimetric dmin embeds
into L1 with distortion at most K. Then

1
K
ϕ∗(C,D) 6 ϕ(C,D) 6 ϕ∗(C,D).

Proof. Let f : (V, dmin) → L1 be an embedding with dist(f) 6 K. Define a semimetric d on V by
d(x, y) = ‖f(x)− f(y)‖1. Since dist(f) 6 K, there exists a > 0 such that

admin(x, y) 6 d(x, y) 6 Kadmin(x, y)

for all x, y ∈ V . By Lemma 1.27, there are cuts (Si, V \Si)16i6k and nonnegative reals (αi)16i6k, such
that

d =
k∑
i=1

αidSi .
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Then

ϕ(C,D) =
∑
uv∈E C(uv)dmin(u, v)∑
u,v∈V D(u, v)dmin(u, v)

>
1
K

∑
uv∈E C(uv)d(u, v)∑
u,v∈V D(u, v)d(u, v) = 1

K

∑k
i=1

γi︷ ︸︸ ︷
αi

∑
uv∈E

C(uv)dSi(u, v)
∑k
i=1 αi

∑
u,v∈V

D(u, v)dSi(u, v)
︸ ︷︷ ︸

δi

= 1
K

∑k
i=1 γi∑k
i=1 δi

>
1
K

∑
i∈I

γi
δi
δi∑

i∈I δi
>

1
K

min
i∈I

γi
δi
>

1
K
ϕ∗(C,D),

where I = {1 6 i 6 k, δi > 0}.

1.5 Coarse and uniform embeddings
Definition 1.29 (Coarse and uniform embeddings). Let f : M → N be a map between metric spaces.
Assume there exist (not necessarily strictly) increasing functions ρ1, ρ2 : R+ → R+ such that

ρ1 (d(x, y)) 6 d (f(x), f(y)) 6 ρ2 (d(x, y)) (∗)

for all x, y ∈M .

(i) We say that f is a coarse embedding if (∗) is satisfied with lim+∞ ρ1 = +∞.

(ii) We say that f is a uniform embedding if one of the following two equivalent conditions is
satisfied:

(a) The inequality (∗) is satisfied with lim0+ ρ2 = 0 and ρ1(t) > 0 for t > 0.
(b) The inequality (∗) is satisfied, f is uniformly continuous, injective, and f−1 : f(M)→M

is uniformly continuous.

Example 1.30. The projection f : R× [0, 1]→ R is a coarse embedding, with ρ1(t) = max (0, t− 1)
and ρ2(t) = t.

Proposition 1.31. For 1 < q < ∞, there exists a map T : L1 (Ω, µ) → Lq (Ω× R, µ⊗ λ) which is
simultaneously a uniform and coarse embedding.

Proof. Define T as follows: for f ∈ L1 (Ω, µ),

Tf(ω, t) =


+1 if 0 < t 6 f(ω)
−1 if f(ω) 6 t 6 0
0 otherwise

.

Hence Tf ∈ L∞ (Ω× R, µ⊗ λ) and, for f, g ∈ L1 (Ω, µ),

|Tf(ω, t)− Tg(ω, t)| =
1 if t ∈ [f(ω), g(ω)]

0 otherwise
.

Therefore,

‖Tf − Tg‖qq =
∫

Ω

∫
R
|Tf(ω, t)− Tg(ω, t)|q dt dµ(ω) =

∫
Ω
|f(ω)− g(ω)| dµ(ω) = ‖f − g‖1 .

This shows that Tf ∈ Lq (Ω× R, µ⊗ λ), and T : L1 (Ω, µ) → Lq (Ω× R, µ⊗ λ) is simultaneously a
uniform and a coarse embedding (with ρ1(t) = ρ2(t) = t1/q).
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Lemma 1.32. For all 0 < α < 2β, there exists a constant cα,β > 0 such that∫
R

(1− cos (tx))β

|t|α+1 dt = cα,β |x|α .

Proof. We first check that the integrand is integrable. We have (1− cos(tx))β = O0
(
|t|2β

)
, so

the integrand is O0
(
|t|2β−α−1

)
, which is integrable near 0 because 2β − α − 1 > −1. Likewise,

(1− cos(tx))β = O±∞(1), so the integrand is O±∞ (|t|−α−1), which is integrable near ±∞ because
−α− 1 < −1. Now let

f(x) =
∫
R

(1− cos (tx))β

|t|α+1 dt.

For x > 0, we have

f(x) = xα
∫
R

(1− cos(tx))β

|tx|α+1 x dt = xα
∫
R

(1− cos (s))β

|s|α+1 ds = xαf(1).

Moreover, f(0) = 0, and f(−x) = f(x) for all x. It follows that f(x) = |x|α f(1) for all x.
Proposition 1.33. For 1 6 p < q < ∞, there exists a map T : Lp (Ω, µ) → Lq (Ω× R, µ⊗ λ;C)
which is simultaneously a coarse and uniform embedding.
Proof. Define T by

Tf(ω, t) = 1− eitf(ω)

|t|(p+1)/q .

Note that, for ϑ ∈ R,
∣∣∣1− eiϑ∣∣∣ =

√
2 (1− cosϑ)1/2. Therefore, using Lemma 1.32,

‖Tf‖qq =
∫

Ω

∫
R

2q/2 (1− cos (tf(ω)))q/2

|t|p+1 dt dµ(ω) = 2q/2cp,q/2
∫

Ω
|f(ω)|p dµ(ω) = 2q/2cp,q/2 ‖f‖pp .

Moreover, given f, g ∈ Lp(Ω), we have
∣∣∣eitf(ω) − eitg(ω)

∣∣∣ =
∣∣∣1− eit(f(ω)−g(ω))

∣∣∣. Applying the above
computation with f replaced by (f − g) yields

‖Tf − Tf‖qq = 2q/2cp,q/2 ‖f − g‖pp .
Corollary 1.34. For 1 6 p < q < ∞, there exists a map T : Lp → Lq which is simultaneously a
coarse and uniform embedding.
Proof. Apply Proposition 1.33 with (Ω, µ) = ([0, 1], λ) to get an embedding Lp → Lq ([0, 1]× R;C).
Then define an embedding Lq ([0, 1]× R;C) ↪→2 Lq ([−1, 1]× R) by

f 7−→ f̃(s, t) =
< (f(s, t)) if s ∈ (0, 1]
= (f(s, t)) if s ∈ [−1, 0)

.

Since Lq ([−1, 1]× R) is separable, it embeds isometrically into Lq by Proposition 1.14.
Definition 1.35 (Uniformly coarse embeddings). Given families (Mα)α∈A and (Nα)α∈A of metric
spaces, embeddings fα : Mα → Nα are called uniformly coarse if there exist increasing functions
ρ1, ρ2 : R+ → R+ such that lim+∞ ρ1 = +∞ and

ρ1 (d(x, y)) 6 d (fα(x), fα(y)) 6 ρ2 (d(x, y)) ,
for all α ∈ A and x, y ∈Mα.
Theorem 1.36 (Yu). If M is a uniformly discrete metric space with bounded geometry and M
coarsely embeds into a Hilbert space, then the coarse geometric Baum-Connes Conjecture holds for
M .
Theorem 1.37 (Kasparov, Yu). If M is a uniformly discrete metric space with bounded geometry
and M coarsely embeds into a uniformly convex Banach space, then the coarse geometric Novikov
Conjecture holds for M .
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2 Fréchet embeddings, Aharoni’s Theorem

2.1 Isometric embeddings into `∞

Theorem 2.1. Let M be a metric space.

(i) M ↪→1 `∞(M).

(ii) If M is finite with |M | = n, then M ↪→1 `
n−1
∞ .

(iii) If M is separable, then M ↪→1 `∞.

Proof. (i) Fix x0 ∈M and define f : M → `∞(M) by

f(x) = d(·, x)− d (·, x0) ∈ RM .

For y ∈M , we have
|f(x)(y)| = |d(y, x)− d (y, x0)| 6 d (x, x0) ,

so f(x) ∈ `∞(M). Now for x, z ∈M ,

‖f(x)− f(z)‖∞ = ‖d (·, x)− d (·, z)‖∞ 6 d(x, z),
‖f(x)− f(z)‖∞ > |f(x)(x)− f(z)(x)| = d(x, z),

hence ‖f(x)− f(z)‖∞ = d(x, z).
(ii) If M = {x0, . . . , xn−1}, then the function f : M → `n−1

∞ defined by f(x) = (d (xi, x0))16i6n−1
works.

(iii) If M is separable, then it has a countable dense susbet S ⊆M . Two possible proofs:

• S embeds isometrically into `∞ by (i), and this extends to an isometric embedding M ↪→1 `∞.

• There is an isometric embedding f : M ↪→1 `∞(M) by (i). But X = Span f(M) is a Banach
space, so by Proposition 1.17, X ↪→1 `∞.

Definition 2.2 (m∞). For n > 1, we define m∞(n) to be the smallest integer m such that every
n-element metric space embeds isometrically into `m∞. Theorem 2.1 implies that

m∞(n) 6 n− 1.

2.2 Background on Ramsey theory and graphs
Theorem 2.3 (Ramsey). For all t > 1, there is an integer n > 1 such that, if edges of Kn are
red-blue coloured, then there is a monochromatic copy of Kt in Kn.

We denote by R(t) the least n that works. It is easy to prove that R(t) 6 4t. It is also known that
R(t) > ct for some c > 1.

More generally, given graphs H1, H2, we denote by R (H1, H2) the least n such that, whenever
edges of Kn are red-blue coloured, then there is either a red copy of H1 or a blue copy of H2 inside
Kn.

In particular, R(t) = R (Kt, Kt), and R (H1, H2) 6 R (max {|H1| , |H2|}).

Definition 2.4 (Bipartite graphs). A graph G = (V,E) is called bipartite if there is a partition
V = V1 ∪ V2 such that, for all x, y ∈ V with xy ∈ E, we have either x ∈ V1, y ∈ V2 or x ∈ V2, y ∈ V1.
The sets V1, V2 are then called vertex classes.

If E = {xy, x ∈ V1, y ∈ V2}, then G is the complete bipartite graph with vertex classes V1, V2,
denoted by KV1,V2 or K|V1|,|V2|.

Example 2.5. K2,2 = C4.
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Definition 2.6 (Complement of a graph). Given a graph G, its complement G has vertex set
V
(
G
)

= V (G) and edge set E
(
G
)

= V (2)\E(G).

Notation 2.7. If G = (V,E) is a graph, we define a metric ρ on V by

ρ(x, y) =


0 if x = y

1 if xy ∈ E
2 otherwise

.

2.3 Lower bound on m∞(n)
Lemma 2.8. Let G be a graph such that (G, ρ) ↪→1 `

k
∞. Then the edge set of G can be covered by at

most k complete bipartite subgraphs of G.

Proof. Let f : (G, ρ)→ `k∞ be isometric. For 1 6 i 6 k, let αi = maxx∈G f(x)i and βi = minx∈G f(x)i.
Then

αi − βi = max
x,y∈G

(f(x)i − f(y)i) 6 max
x,y∈G

‖f(x)− f(y)‖∞ = max
x,y∈G

ρ(x, y) 6 2.

We set I = {i ∈ {1, . . . , k} , αi − βi = 2}. We thus have

xy ∈ E
(
G
)
⇐⇒ ρ(x, y) = 2⇐⇒ ∃i ∈ I, |f(x)i − f(y)i| = 2
⇐⇒ ∃i ∈ I, (f(x)i = αi and f(y)i = βi) or (f(x)i = βi and f(y)i = αi) .

Hence, if V 1
i = {x ∈ V, f(x)i = αi} and V 2

i = {x ∈ V, f(x)i = βi}, then

E
(
G
)

=
⋃
i∈I
E
(
KV 1

i ,V
2
i

)
.

Lemma 2.9 (Spencer). There exists α > 0 such that

R (C4, Kt) > α

(
t

log t

)3/2

.

Theorem 2.10 (Ball). There exists C > 0 such that for all n > 2,

m∞(n) > n− Cn2/3 log n.

Proof. Note that there exists b > 0 such that for all n, if t =
⌈
bn2/3 log n

⌉
, then

n < α

(
t

log t

)3/2

.

Now fix n > 2 and let t =
⌈
bn2/3 log n

⌉
. By Lemma 2.9, n < R (C4, Kt). Therefore, there exists a

red-blue colouring of Kn without a red C4 or a blue Kt. We let G be the blue graph and k = m∞(n).
Therefore, (G, ρ) ↪→1 `

k
∞ by definition, so Lemma 2.8 implies that the red graph G is covered by at

most k complete bipartite subgraphs KV 1
1 ,V

2
1
, . . . , KV 1

k
,V 2
k
. Since C4 = K2,2 6⊆ G, one vertex class in

each of the complete bipartite subgraphs is of size 1, so we may assume that |V 1
i | = 1 for all i. If

S = ⋃k
i=1 V

1
i , then there is no edge in G between vertices of V \S, i.e. the graph induced by G on

V \S is complete. Since Kt 6⊆ G and |S| 6 k, it follows that n− k 6 |V | − |S| = |V \S| 6 t− 1, so

k = m∞(n) > n− t+ 1 > n− Cn2/3 log n

for some constant C.

Remark 2.11. Since R(t) > ct for some c > 1, the method used to prove Theorem 2.10 won’t give
a lower bound better than n− C log n on m∞(n).
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2.4 Nonlinear Hahn-Banach Theorem
Remark 2.12. We aim to prove that n−m∞(n) −−−→

n→∞
+∞.

Lemma 2.13 (Nonlinear Hahn-Banach Theorem). Let M be a metric space, A ⊆M , and f : A→ R
a L-Lipschitz map. Then there is a L-Lipschitz extension f̃ : M → R of f .
Proof. Fix x0 ∈M\A and define

f̃ : x ∈ A ∪ {x0} 7−→

f(x) if x ∈ A
α if x = x0

.

We need to choose a value of α ∈ R such that |α− f(x)| 6 Ld (x0, x) for all x ∈ A, i.e.
f(y)− Ld (y, x0) 6 α 6 f(x) + Ld (x, x0)

for all x, y ∈ A. Such an α exists if and only if
f(y)− Ld (y, x0) 6 f(x) + Ld (x, x0) (∗)

for all x, y ∈ A. To prove (∗), note that
f(y)− f(x) 6 Ld(x, y) 6 Ld (x, x0) + Ld (y, x0)

for all x, y ∈ A.
Now if M\A is finite or countable, apply the above argument recursively to get an extension to

M . In the general case, use Zorn’s Lemma to get a maximal extension
(
M̃, f̃

)
; the above will imply

that M̃ = M .
Proposition 2.14. If M is a finite metric space and A ⊆M , then

A ↪→1 `
|A|−k
∞ =⇒M ↪→1 `

|M |−k
∞ .

Proof. Let f =
(
f1, . . . , f|A|−k

)
: A −→ `|A|−k∞ be isometric. Then each map fi : A→ R is 1-Lipschitz,

so by Lemma 2.13, there is a 1-Lipschitz extension gi : M → R for 1 6 i 6 |A| − k. Now enumerate
M\A as {yi, |A| − k < i 6 |M | − k} and define

gi : x ∈M 7−→ d (x, yi) ∈ R

for |A| − k < i 6 |M | − k. Then g =
(
g1, . . . , g|M |−k

)
: M −→ `|M |−k∞ is an isometric embedding.

2.5 More background on Ramsey theory and graphs
Notation 2.15. For s > 2 and n ∈ N, let

K(s)
n = {A ⊆ {1, . . . , n} , |A| = s} .

For instance, K(2)
n = E (Kn).

Proposition 2.16. For all s, t, c > 1, there exists n > 1 such that, if K(s)
n is c-coloured, then there is

a monochromatic copy of K(s)
t , i.e. A ⊆ {1, . . . , n} with |A| = t such that A(s) = {B ⊆ A, |B| = s}

is monochromatic.
Definition 2.17 (Trees). A tree T is a connected acyclic graph. Equivalently, for all x, y ∈ T , there
is a unique path from x to y.

If diam(T ) = maxx,y∈T d(x, y) 6 4 (for the graph distance), then there is a vertex c ∈ T such that
d(x, c) 6 2 for all x. Call this vertex c a centre of T . Vertices in Γ(c) = {a ∈ T, ac ∈ E} are called
main vertices. Every other vertex is connected to a unique main vertex.
Definition 2.18 (Orientation of a graph). An orientation of a graph G is an assignement of a
direction −→xy or −→yx to each edge xy ∈ E.

The orientation is called alternating if for all x ∈ V (G), either all edges incident to x are oriented
out of x (i.e. in the direction −→xy) or towards x.

A connected graph has either zero or two alternating orientations. A tree always has exactly two.
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2.6 Gap between n and m∞(n)
Definition 2.19 (Generic metric space). A metric space ({x1, . . . , xn} , d) is generic if the

(
n
2

)
dis-

tances (d (xi, xj))16i<j6n are linearly independent over Q.
Given three distinct points x, y, z in a generic metric space, we have d (x, z) < d (x, y) + d (y, z).

Theorem 2.20. For all integers k ∈ N, there exists N ∈ N such that for all n > N , m∞(n) 6 n−k.
In other words, n−m∞(n) −−−→

n→∞
+∞.

Proof. Step 1 : we can restrict to generic metric spaces. Consider an arbitrary metric space M =
({x1, . . . , xn} , d). For j > 1 and 1 6 r < s 6 n, we can pick αrs ∈

(
1
2j ,

1
j

)
such that dj (xr, xs) =

d (xr, xs)+αrs defines a generic metric. If for all j there is an isometric embedding fj : (M,dj)→ `m∞
for some m, then we may assume without loss of generality that Im fj is bounded independently of
j. By compactness, after passing to a subsequence, we have

fj (xr) −−−→
j→∞

f (xr)

for all r. Thus f : (M,d)→ `m∞ is also an isometric embedding.
From now on, M is an n-element generic metric space, and the elements of M are real numbers

(but d is not the distance induced by R).
Step 2 : characterisation of isometric embeddings in terms of Lipschitz graphs. Given a 1-Lipschitz

map f : M → R, we define its Lipschitz graph G(f) with vertex set M and such that

xy ∈ E ⇐⇒ |f(x)− f(y)| = d(x, y).

An edge xy is given the orientation −→xy if and only if f(x)−f(y) = d(x, y). (For instance, if f = d(·, a),
then G(f) is a tree of diameter 2 centred at a; this is because f(x) − f(y) < d(x, y) for x 6= y in
M\{a} since d is generic.) Now a map f : M → `m∞ is an isometric embedding if and only if its
coordinates (fi : M → R)16i6m are 1-Lipschitz and for all x 6= y, there exists 1 6 i 6 m such that
xy ∈ E (G (fi)). It follows that M ↪→1 `

m
∞ if and only if the edges of the complete graph on M can

be covered by at most m such Lipschitz graphs.
Step 3 : sufficient condition for a map to be 1-Lipschitz. Let T be a tree on M with diam(T ) 6 4.

Fix a vertex x0 ∈ T , a real α ∈ R, and an alternating orientation of T . Consider the unique
f : M → R satisfying f (x0) = α and f(x)− f(y) = d(x, y) for all −→xy ∈ E. Then f is 1-Lipschitz if
the following condition is satisfied:

d (w, x) + d (y, z) < d (x, y) + d (w, z) , (♦)

for all paths wxyz in T . Consider indeed two vertices x, y ∈ T . We need |f(x)− f(y)| 6 d(x, y).

• If x = y or xy ∈ E, this is true by construction of f .

• If there is a path xzy, then

|f(x)− f(y)| = |f(x)− f(z) + f(z)− f(y)| = |d(x, z)− d(z, y)| < d(x, y),

the last inequality being strict by genericity of the metric.

• If there is a path xwzy, then

|f(x)− f(y)| = |f(x)− f(w) + f(w)− f(z) + f(z)− f(y)|
= |d(x,w)− d(w, z) + d(z, y)|

=

 d(x,w)− d(w, z) + d(z, y)
(♦)
< d(x, y)

or −d(x,w) + d(w, z)− d(z, y)
(4)
< d(x, z)− d(z, y)

(4)
< d(x, y)

,

where (4) refers to the triangle inequality, which is strict in a generic metric space.
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• If there is a path xuwzy, the reasoning is similar.

We say that a tree T on M is admissible if it has diameter at most 4 and satisfies (♦).
Step 4 : given distinct points c, a1, . . . , a` in M , there is a unique admissible tree T on M with

centre c and main vertices a1, . . . , a`. Indeed, such a tree T is admissible if and only if each vertex
x ∈ M\ {c, a1, . . . , a`} is joined to a main vertex a ∈ {a1, . . . , a`} such that, for all main vertices
b 6= a, we have d(x, a) + d(c, b) < d(a, c) + d(x, b), or in other words,

d(x, a)− d(a, c) < d(x, b)− d(b, c).

Hence, there is a unique possible choice of edge xa, where a is chosen to minimise (d(x, a)− d(a, c)).
This tree T will be denoted by T (c; a1, . . . , a`).

Step 5. We colour M (4) with colour set S3 as follows: given w < x < y < z in M (recall that
elements of M are assumed to be real numbers, so they are ordered), let

R1 = d(w, x) + d(y, z),
R2 = d(w, y) + d(x, z),
R3 = d(w, z) + d(x, y).

We give wxyz the colour i, j, k (i.e. the element of S3 given by 1 7→ i, 2 7→ j and 3 7→ k) if
Ri > Rj > Rk. This defines a 6-colouring of M (4).

Main claim: for all k ∈ N, for all c ∈ S3, there is a tc ∈ N such that every monochromatic metric
space of size tc and colour c can be covered by at most tc − k admissible trees.

Proof of the claim.

• Case 1 : c = 2, 1, 3. In this case, we show that there is no monochromatic metric space M of
colour c and size at least 5 (therefore, tc = 5 will work). Indeed, assume otherwise and pick
u < w < x < y < z in M . We have

d(u,w) + d(x, y) > d(u, y) + d(w, x),
d(w, x) + d(y, z) > d(w, z) + d(x, y),
d(u, y) + d(w, z) > d(u,w) + d(y, z).

Summing these inequalities yields 0 > 0, a contradiction.

• Case 2 : c = 3, 1, 2. Just replace > by < in the first case.

• Case 3 : c = 1, 3, 2. We then claim that, if for all M monochromatic of colour c and of size n,
all but m edges of KM can be covered by s admissible trees, then for all M ′ monochromatic of
colour c and of size n+ 2, all but m− 1 edges of KM ′ can be covered by s+ 2 admissible trees.
To prove this mini-claim, we take M ′ monochromatic of colour c and of size n + 2, we write
M ′ = M ∪{a′, b′}, where a < a′ < b′ < b and M ∩ ((a, a′] ∪ [b′, b)) = ∅. By assumption, M can
be covered by s admissible trees; by Step 4 we may extend them to the whole of M ′. We then
add the two trees T (a; a′, b) and T (b; a′, b′). Hence every x ∈ M ′\ {a, a′, b} is joined to a′ in
T (a; a′, b) and every x ∈M ′\ {b, a′, b′} is joined to b′ in T (b; a′, b′). This proves the mini-claim.
To apply it, we start with |M | = k, s = 0 and m =

(
k
2

)
and we apply the mini-claim n times

to get M ′ with tc = |M ′| = k + 2
(
k
2

)
= k2, s = 2

(
k
2

)
= tc − k and m = 0.

• Case 4 : c = 1, 2, 3. We prove the main claim by induction on k. For k = 1, tc = 1 will do. Let
k > 1 and assume tc works for k. We prove that 2tc + 3 works for k + 1. Take

M = {−1, 0, 1, 2, . . . , tc + 1, tc + 2, . . . , 2tc + 1} .

Consider T (0;−1, 2), T (1; 0, 2) and T (tc + 1 + i; i, i+ 1) for 1 6 i 6 tc. These cover all edges
except perhaps edges between vertices in {tc + 2, . . . , 2tc + 1}. Those can be covered by tc − k
trees by the induction hypothesis. Therefore, we need 2tc+ tc−k = 2tc+2−k = |M |− (k + 1).
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• Case 5 : c = 2, 3, 1. We show that tc = 2k works for k by writing M = {−k, . . . ,−1, 1, . . . , k}
and considering the trees T (−i;−k,−k + 1, . . . ,−i− 1, 1, . . . , k) for 1 6 i 6 k.

• Case 6 : c = 3, 2, 1. We show that tc = 4k+1 works for k by writingM = {0, 1, . . . , 4k} and con-
sidering the trees T (0; i, 4k + 1− i) for 1 6 i 6 2k and T (i; 2k + i, 2k + i+ 1, . . . , 4k + 1− i)
for 1 6 i 6 k.

Step 6. Let t = maxc∈S3 tc. By Ramsey theory (Proposition 2.16), there exists N ∈ N such that,
if K(4)

N is 6-coloured, then there is a monochromatic copy of K(4)
t . So given n > N and an n-element

generic metric space M , there is a colour c ∈ S3 and a subset A ⊆ M of cardinal tc such that A is
monochromatic. By the claim, the complete graph on A can be covered by |A| − k admissible trees,
so by Step 2, A ↪→1 `

|A|−k
∞ , and by Proposition 2.14, M ↪→1 `

|M |−k
∞ , so that m∞(n) 6 n− k.

2.7 Upper bound on mp(n)
Definition 2.21 (mp). Note that m∞(n) can be defined equivalently as the least integer m such
that every n-element subset of some space L∞ (Ω, µ) embeds isometrically into `m∞ (compare with
Definition 2.2).

For 1 6 p 6 ∞, we define similarly mp(n) to be the least integer m such that every n-element
subset of some space Lp (Ω, µ) embeds isometrically into `mp .

Remark 2.22. Proposition 1.21 implies that

m1(n) 6 n!,

and Example 1.22.(ii) implies that
m2(n) = n− 1.

Moreover, Theorems 2.1 and 2.10 imply that

n− Cn2/3 log n 6 m∞(n) 6 n− 1.

Lemma 2.23 (Caratheodory’s Theorem). Given L ⊆ RN ,

convL =
{

N∑
i=0

tixi, (x0, . . . , xN) ∈ LN+1, (t0, . . . , tN) ∈ (R+)N+1 ,
N∑
i=0

ti = 1
}
.

In particular, convL is compact if L is compact.

Proof. Given x ∈ convL, we write x = ∑m
i=1 tixi with xi ∈ L, ti > 0 and ∑m

i=1 ti = 1, and we
assume that m > N + 1 (otherwise the result is obvious). Then x1, . . . , xm are affinely dependent
(i.e. x1 − x2, . . . , x1 − xm are linearly dependent), so there exist λ1, . . . , λm not all zero such that∑m
i=1 λi = 0 and∑m

i=1 λixi = 0. For any s > 0, we have∑m
i=1 (ti − sλi) = 1 and∑m

i=1 (ti − sλi)xi = x.
If λi 6 0, then ti − sλi > 0, so we take

s = min
{
ti
λi
, λi > 0

}
.

Now ti−sλi > 0 for all i and there is at least one i such that ti−sλi = 0. Therefore, we can decrease
m as long as m > N + 1, which proves the result.

Theorem 2.24. For 1 6 p <∞ and for n > 2, we have

mp(n) 6
(
n

2

)
.
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Proof. Fix n > 2. Given an n-tuple M = (x1, . . . , xn) in some space Lp (Ω, µ), let

θM =
(
‖xi − xj‖pp

)
16i<j6n

∈ RN ,

where N =
(
n
2

)
. Consider the set C of such θM for all n-tuples M in some Lp (Ω, µ).

The set C is a cone in RN , i.e. tθ ∈ C for all t > 0 and θ ∈ C. Moreover, C is stable by addition:
if M = (x1, . . . , xn) is a n-tuple in Lp (Ω, µ) and M ′ = (x′1, . . . , x′n) is a n-tuple in Lp (Ω′, µ′), then
θM + θM ′ = θN where N = ((x1, x

′
1) , . . . , (xn, x′n)) in Lp (Ωq Ω′). Hence, C is convex.

Say that an element θ ∈ C is linear if there exists (t1, . . . , tn) ∈ Rn such that θij = |ti − tj|p for
all 1 6 i < j 6 n. Define

K = C ∩

θ ∈ RN ,
∑

16i<j6n
θij = 1

 ,
L = {θ ∈ K, θ is linear} =

(|ti − tj|p)16i<j6n , (t1, . . . , tn) ∈ Rn,
∑

16i<j6n
|ti − tj|p = 1

 .
The set L is compact, and K is convex, so convL ⊆ K.

Given θ = θM ∈ K, with M = (x1, . . . , xn) in Lp(Ω, µ), we can approximate each xi with
simple functions yi such that ϕ =

(
‖yi − yj‖pp

)
16i<j6n

∈ K. Hence we have a measurable partition
Ω = ⋃R

r=1Ar such that yi|Ar is constant for all i, r. We let

ϕr =
(∥∥∥yi|Ar − yj |Ar ∥∥∥pp

)
16i<j6n

.

Then ϕr is linear and ϕ = ∑R
i=1 ϕr. Now if αr = ∑

16i<j6n (ϕr)ij, then
∑R
r=1 αr = 1 and

ϕ =
R∑
r=1

αr

(
ϕr
αr

)
∈ convL.

This shows that K ⊆ convL. But Caratheodory’s Theorem (Lemma 2.23) implies that convL =
convL, and therefore

K = convL.
Now pick θ ∈ C, write θ = ∑N

r=1 θr, where θr is linear for all r (note that
{
θ,
∑

16i<j6n θij = 1
}
is

(N − 1)-dimensional). For each r, there exist tri ∈ R such that θr = (|tri − trj|p)16i<j6n. If θ = θM ,
M = (x1, . . . , xn) in Lp (Ω, µ), define f : M → `Np by f (xi) = (tri)16r6N . Thus, for 1 6 i < j 6 n,

‖f (xi)− f (xj)‖pp =
N∑
r=1
|tri − trj|p =

N∑
r=1

(θr)ij = θij = ‖xi − xj‖pp .

Remark 2.25. For 1 6 p < 2, Theorem 2.24 is essentially optimal: we can show that

mp (2n+ 1) > n.

2.8 Aharoni’s Theorem
Remark 2.26. Given Banach spaces X and Y , if X bilipschitzly embeds into Y , must X isomor-
phically embed into Y ?

The answer is yes if Y is separable and isomorphic to the dual of some Banach space W . But
Aharoni’s Theorem will show that the answer is no in general.

Notation 2.27. (i) In a metric space M , for x ∈M and δ > 0, let

Bδ(x) = {y ∈M, d(y, x) 6 δ} .

A subset A ⊆M is said to be δ-dense in M if for all x ∈M , d(x,A) < δ.

17



(ii) Given a set S, let

c0(S) = {f ∈ `∞(S), ∀ε > 0, |{s ∈ S, |f(s)| > ε}| <∞} .

Hence c0 = c0(N) ∼= c0(S) if S is countably infinite.

Lemma 2.28. Let M be a separable metric space, λ > 2, a > 0, N ⊆M . Then there is a collection
(Mi)i∈I (with I ⊆ N) of subsets of N such that

(i) ∀x ∈ N, ∃i ∈ I, d (x,Mi) < a.

(ii) ∀x ∈M, |{i ∈ I, d (x,Mi) < (λ− 1) a}| <∞.

(iii) ∀i ∈ I, diam (Mi) 6 2λa.

Proof. By rescaling the distance in M , we may assume that a = 1. Since M is separable, so is N ,
and therefore there are countable sets Z ⊆ N that is 1-dense in N and Y ⊆ M that is 1-dense in
M . By replacing Y by Z ∪ Y , we may assume that Z ⊆ Y . We enumerate Y as {yi, i ∈ I} (with
I ⊆ N) and we set

Mi = (Bλ (yi) ∩ Z) \
⋃
j<i

Mj

 .
Therefore, for all i ∈ I, Mi ⊆ Z ⊆ N . We now check (i)− (iii).

(iii) For all i ∈ I, Mi ⊆ Bλ (yi), so diam (Mi) 6 2λ = 2λa.
(i) Given x ∈ N , there is i ∈ I such that yi ∈ Z and d (x, yi) < 1. Thus yi ∈ Bλ (yi) ∩ Z ⊆⋃

16j6iMj, so there exists j 6 i such that d (x,Mj) < 1 = a.
(ii) Given x ∈ M , there exists i0 ∈ I such that d (x, yi0) < 1. If d (x,Mi) < λ − 1 for some

i, then d (yi0 ,Mi) < λ. Now for i > i0 and y ∈ Mi, the facts that yi0 ∈
⋃
j6i0 Mj and Mi ∩(⋃

j6i0 Mj

)
= ∅ imply that d (yi0 , y) > λ, so d (yi0 ,Mi) > λ and d (x,Mi) > λ− 1. Therefore, the set

{i ∈ I, d (x,Mi) < λ− 1} has at most i0 elements.

Theorem 2.29 (Aharoni). For any ε > 0, any separable metric space embeds into c0 with distortion
at most 3 + ε.

Proof. Given a separable metric space M and ε > 0, choose λ > 2 and η > 0 such that
3λ
λ− 2(1 + η) < 3 + ε.

For k ∈ Z, let ak = (1 + η)−k. Fix a centre c ∈M and let

Mk = M\B3λak/2(c).

Apply Lemma 2.28 to M and N = Mk, a = ak, to get subsets (Mki)i∈I as in the lemma. Set
S = Z× I. For (k, i) ∈ S, define

fki : x ∈M 7−→ max {0, (λ− 1) ak − d (x,Mki)} ∈ R+,

and let f : x ∈M 7−→ (fki(x))k,i∈S ∈ (R+)S.
We first prove that f(x) ∈ c0(S) for all x ∈ M . Since (λ− 1) ak −−−→

k→∞
0, it is enough to show

that for any s ∈ Z, the set Ts = {(k, i) ∈ S, fki(x) > (λ− 1)as} is finite. For k > s, se have

fki(x) 6 (λ− 1)ak < (λ− 1)as,

so (k, i) 6∈ Ts for all (k, i) ∈ S with k > s. Since ak −−−−→
k→−∞

+∞, there is r < s such that

d(x, c) <
(
λ
2 + 1

)
ar. Hence, for k < r, d(x, c) <

(
λ
2 + 1

)
ak, so for all i ∈ I,

d (x,Mki) > d
(
x,M\B3λak/2(c)

)
>

3λak
2 − d(x, c) > (λ− 1)ak.
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Therefore, for all (k, i) ∈ S with k < r, fki(x) = 0 and x 6∈ Ts. Finally, by Lemma 2.28, for each
k ∈ Z, the set

{i ∈ I, fki(x) > 0} = {i ∈ I, d (x,Mki) < (λ− 1) ak}
is finite, so Ts ⊆

⋃s
k=r {i ∈ I, fki(x) > 0} is finite.

Thus, we have a map f : M → c0(S), and f is clearly 1-Lipschitz. To find a lower bound, fix
x 6= y in M and choose k ∈ Z such that

3λak < d(x, y) 6 3λak (1 + η) .

By the triangle inequality, both x and y cannot belong to B3λak/2(c), so we may assume without loss
of generality that x ∈Mk. By Lemma 2.28, there exists i ∈ I such that d (x,Mki) < ak, so

fki(x) > (λ− 1)ak − ak = (λ− 2)ak.

Pick w ∈Mki such that d(x,w) < ak. For any z ∈Mki, we have

d(y, z) > d(y, x)− d(x,w)− d(w, z) > 3λak − ak − diamMki > (λ− 1) ak,

so d (y,Mki) > (λ− 1) ak and fki(y) = 0. Therefore

‖f(x)− f(y)‖∞ > |fki(x)− fki(y)| > (λ− 2) ak = 3λak(1 + η)
3λ(1 + η) (λ− 2) > d(x, y)

3 + ε
.

Remark 2.30. The above proof of Aharoni’s Theorem shows that M ↪→3+ε c
+
0 , where c+

0 (S) =
{f ∈ c0(S), ∀x ∈ S, f(x) ∈ R+}. We can actually show that

sup
M

inf
f :M→c+

0
bilipschitz

dist(f) = 3 and sup
M

inf
f :M→c0
bilipschitz

dist(f) = 2.

3 Bourgain’s Embedding Theorem

3.1 Dvoretzky’s Theorem
Definition 3.1 (Distortion of a metric space). For metric spaces X, Y , define

cY (X) = inf
f :X→Y

bilipschitz

dist(f).

The Lp-distortion of X is cp(X) = cLp(X), the euclidean distortion of X is c2(X) = cL2(X).
Corollary 1.19 implies that, for any finite metric space X,

cp(X) 6 c2(X).

Theorem 3.2 (Dvoretzky). For every n ∈ N and for every ε > 0, there exists N ∈ N such that
every Banach space Y with dim Y > N contains a (1 + ε)-isomorphic copy of `n2 .

Remark 3.3. (i) The integer N of Dvoretzky’s Theorem can be taken at most exp
(
Cn
ε2

)
for some

absolute constant C.

(ii) Dvoretzky’s Theorem implies that
cY (X) 6 c2(X)

for every finite metric space X and every infinite-dimensional Banach space Y .
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3.2 Padded decompositions and existence of scaled embeddings
Definition 3.4 (Partitions and clusters). We fix a metric space X with |X| = n. We denote by PX
the set of partitions of X. For P ∈ PX , the elements of P are called clusters. For x ∈ X, we let
P (x) be the unique cluster to which it belongs.

Definition 3.5 (Stochastic (padded) decompositions). A stochastic decomposition of a finite metric
space X is a probability measure Ψ on PX . The support of Ψ is

Supp Ψ = {P ∈ PX , Ψ(P ) > 0} .

Given ∆ > 0 and ε : X → (0, 1], we say that Ψ is an (ε,∆)-padded decomposition if for all
P ∈ Supp Ψ,

(i) ∀C ∈ P, diamC < ∆,

(ii) ∀x ∈ X, Ψ (d (x,X\P (x)) > ε(x)∆) > 1
2 .

Definition 3.6 (`q-sum). Given a collection (Xi)i∈I of Banach spaces (with I ⊆ N), define (⊕i∈I Xi)q
to be the space of sequences (xi)i∈I ∈

∏
i∈I Xi such that ∑i∈I ‖xi‖

q <∞. This is a Banach space with
norm ‖·‖q defined by ∥∥∥(xi)i∈I∥∥∥q =

(∑
i∈I
‖xi‖q

)1/q

.

This definition also makes sense when q =∞ (replacing ∑i∈I ‖xi‖
q by supi∈I ‖xi‖).

Moreover, there is a subspace (⊕i∈I Xi)c0
of sequences (xi)i∈I ∈ (⊕i∈I Xi)∞ such that ‖xi‖ −−−→

i→∞
0.

Note that, if Xi = `q (Si) for all i, then (⊕i∈I `q (Si))q ∼= `q (∏i∈I Si).

Lemma 3.7. Let Ψ be an (ε,∆)-padded decomposition of a finite metric space X and let 1 6 q <∞.
Then there is a 1-Lipschitz map f : X → `q such that

(i) ∀x ∈ X, ‖f(x)‖q 6 ∆,

(ii) ∀x, y ∈ X, d(x, y) ∈ [∆, 2∆) =⇒ ‖f(x)− f(y)‖q > 1
16ε(x)d(x, y).

Proof. Fix P ∈ Supp Ψ, and let C1, C2, . . . , Cm(P ) be the clusters of P . Let U1, U2, . . . , U2m(P ) be all
possible unions of the (Ci)16i6m(P ). For 1 6 j 6 2m(P ), define fP,j : X → R by

fP,j(x) =
min {∆, d (x,X\P (x))} if x ∈ Uj

0 otherwise
.

We have 0 6 fP,j(x) 6 ∆ for all x ∈ X. Let x, y ∈ X.

• If P (x) 6= P (y), then 0 6 fP,j(x) 6 d (x,X\P (x)) 6 d(x, y) and similarly for y.

• If P (x) = P (y), x, y ∈ Uj, then |fP,j(x)− fP,j(y)| 6 |d (x,X\P (x))− d (y,X\P (x))| 6 d(x, y).

• If P (x) = P (y), x, y 6∈ Uj, then fP,j(x) = fP,j(y) = 0.

This shows that fP,j is 1-Lipschitz.
Now define fP : X → `2m(P )

q by

fP (x) =
(
2−m(P )/qfP,j(x)

)
16j62m(P )

.

Hence, for all x,

‖fP (x)‖q =
2m(P )∑

j=1
2−m(P )fP,j(x)q

1/q

6 ∆,
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and for x, y ∈ X,

‖fP (x)− fP (y)‖q =
2m(P )∑

j=1
2−m(P ) |fP,j(x)− fP,j(y)|q

1/q

6 d(x, y),

so fP is 1-Lipschitz.
Finally, define f : X →

(⊕
P∈Supp Ψ `

2m(P )
q

)
q
↪→1 `q by

f(x) =
(
Ψ(P )1/qfP (x)

)
P∈Supp Ψ

.

Hence ‖f(x)‖q 6 ∆ for all x, and f is 1-Lipschitz. Fix x, y ∈ X such that d(x, y) ∈ [∆, 2∆). Let

E = {P ∈ Supp Ψ, d (x,X\P (x)) > ε(x)∆} .

Fix P ∈ E. If x ∈ Uj 63 y, then

|fP,j(x)− fP,j(y)| = min {∆, d (x,X\P (x))} > ε(x)∆.

Note that P (x) 6= P (y) because ∀C ∈ P, diam(C) < ∆ 6 d(x, y). Therefore, for one quarter of all
possible values of j, we have x ∈ Uj 63 y. Hence,

‖fP (x)− fP (y)‖q >
 ∑
x∈Uj 63y

2−m(P ) |fP,j(x)− fP,j(y)|q
1/q

>
ε(x)∆
41/q .

It follows finally that

‖f(x)− f(y)‖q >
(∑
P∈E

Ψ(P ) ‖fP (x)− fP (y)‖qq
)1/q

>
ε(x)∆
41/q Ψ(E)

>
ε(x)∆
41/q · 2 >

ε(x)
41/q · 4d(x, y) > 1

16ε(x)d(x, y).

Definition 3.8 (Relevant scales). Given a finite metric space X, we define

S(X) =
{
` ∈ Z, ∃x, y ∈ X, d(x, y) ∈

[
2`, 2`+1

)}
.

Elements of S(X) are called relevant scales. We denote R(X) = |S(X)|.

Example 3.9. If X is a finite connected graph with the graph distance, then R(X) 6 dlog2 |X|e.

Definition 3.10 (Scale-τ embedding). Given K, τ > 0, a map f : X → Y is called a scale-τ
embedding with deficiency K if f is 1-Lipschitz and

d (f(x), f(y)) > 1
K
d(x, y),

for all x, y ∈ X such that d(x, y) ∈ [τ, 2τ).

Proposition 3.11. Given K > 0 and 1 6 q < ∞, assume that for all ` ∈ S(X), there exists
f` : X → `q a scale-2` embedding with deficiency K. Then

cq(X) 6 K ·R(X)1/q.
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Proof. Define f : X →
(⊕

`∈S(X) `q
)
q

∼= `q by

f(x) = (f`(x))`∈S(X) .

Then, for all x 6= y in X,

‖f(x)− f(y)‖q =
 ∑
`∈S(X)

‖f`(x)− f`(y)‖qq

1/q

6 R(X)1/qd(x, y).

Moreover, there exists ` ∈ S(X) such that d(x, y) ∈
[
2`, 2`+1

)
, so

‖f(x)− f(y)‖q > ‖f`(x)− f`(y)‖q >
1
K
d(x, y).

Therefore cq(X) 6 dist(f) 6 K ·R(X)1/q.

Notation 3.12. Given functions a, b defined on a set S with values in R+, we write a . b if

∃C ∈ R+, ∀s ∈ S, a(s) 6 Cb(s).

Corollary 3.13. If for all ` ∈ S(X) there is an
(
ε, 2`

)
-padded decomposition of X with ε(x) > 1

K
,

then, for all 1 6 q <∞,
cq(X) 6 K ·R(X)1/q.

Remark 3.14. Corollary 3.13 actually yields

cq(X) 6 K ·R(X)min{ 1
2 ,

1
q}

because cq(X) 6 c2(X) by Corollary 1.19.

3.3 Existence of padded decompositions
Theorem 3.15. For all ` ∈ Z, there is an

(
ε, 2`

)
-padded decomposition of X with

ε(x) = 1
16

(
1 + log

(
|B2`(x)|
|B2`−3(x)|

))−1

.

Proof. Fix ` ∈ Z and set ∆ = 2`. Fix an ordering < on X. Pick a pair (π, α) ∈ SX×
(

1
4 ,

1
2

)
uniformly

and independently at random. To this pair, there corresponds an element P ∈ PX with clusters

Cy = Bα∆(y)\
⋃

π(z)<π(y)
Bα∆(z),

for y ∈ X (where we throw away the empty clusters). This gives a random partition, so we have a
stochastic decomposition (formally, we are taking a pushforward of the product probability measure
on SX ×

(
1
4 ,

1
2

)
). We now show that this decomposition is (ε,∆)-padded, where ε is as in the

statement of the theorem. Note that

diam (Cy) 6 2α∆ < ∆,

for all y ∈ X.
Now fix x ∈ X and let t 6 ∆

8 . Let B be the event that d (x,X\P (x)) < t. Our aim is to show
that P(B) 6 1

2 for t = ε(x)∆. Note that

B = {Bt(x) 6⊆ P (x)} =
⋂
y∈X
{Bt(x) 6⊆ Cy} .
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Let y ∈ X such that Bt(x) ∩ Cy 6= ∅; then Bt(x) ∩Bα∆(y) 6= ∅, so d(x, y) 6 α∆ + t 6 ∆
2 + ∆

8 < ∆,
so y ∈ B∆(x). We denote by y1, . . . , yb the elements of B∆(x) in order of increasing distance to x.
Now let y ∈ X such that d(x, y) 6 α∆ + t, with π(y) minimal for <. Then, by minimality, Bt(x) is
disjoint from ⋃

π(z)<π(y) Cz = ⋃
π(z)<π(y) Bα∆(z).

This shows that, for the above choice of y, Bt(x) ⊆ Cy if and only if Bt(x) ⊆ Bα∆(y). Now if B
happens, then Bt(x) 6⊆ Bα∆(y) for some y which can be taken as above, and hence

d(x, y) > α∆− t > ∆
4 −

∆
8 = ∆

8 .

Let a =
∣∣∣B∆/8(x)

∣∣∣, then B∆/8(x) = {y1, . . . , ya} with the above notations. So y = yk for some
a < k 6 b. This proves that

B ⊆
b⋃

k=a+1
Ek,

where Ek is the event that α∆− t < d (x, yk) 6 α∆ + t with π (yk) minimal for <. Let

Ik = [d (x, yk)− t, d (x, yk) + t) .

Then Ek ⊆ {α∆ ∈ Ik}, so

P(B) 6
b∑

k=a+1
P (Ek) =

b∑
k=a+1

P (Ek | α∆ ∈ Ik)P (α∆ ∈ Ik) .

If α∆ ∈ Ik, then d (x, yj) 6 d (x, yk) 6 α∆ + t for all 1 6 j 6 k. If in addition Ek occurs, we must
have π (yk) < π (yj) for j < k, so

P(B) 6
b∑

k=a+1
P (∀j < k, π (yk) < π (yj) | α∆ ∈ Ik)P (α∆ ∈ Ik)

=
b∑

k=a+1
P (∀j < k, π (yk) < π (yj))P (α∆ | Ik)

6
b∑

k=a+1

1
k
· 8t

∆ 6
8t
∆ log

(
b

a

)
6

1
2 ,

if t = ε(x)∆.

Remark 3.16. Note that, in Theorem 3.15, ε(x) & 1
log|X| , so Corollary 3.13 yields

c2(X) . (log |X|)
√
R(X).

3.4 Glueing Lemma and Bourgain’s Embedding Theorem
Notation 3.17. For x, y ∈ X and ` ∈ Z, define

γ`(x, y) =
x if |B2`(x)| > |B2`(y)|
y otherwise

.

Lemma 3.18. Assume that for all ` ∈ Z, there is a 1-Lipschitz map h` : X → `q (with 1 6 q <∞)
such that ‖h`(x)‖q 6 2` for all x ∈ X. Then there exists H : X → `q such that

(i) Lip(H) . (log |X|)1/q,
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(ii) For all x, y ∈ X and ` ∈ Z such that d (x, y) ∈
[
2`, 2`+1

)
, we have

‖H(x)−H(y)‖q >
(

log2
|B2`+1 (γ`−3(x, y))|
|B2`−3 (γ`−3(x, y))|

)1/q

‖h`(x)− h`(y)‖q .

Proof. Let ρ : R → R+ be the piecewise affine function defined by ρ|(−∞,1/16] = ρ|[16,+∞) = 0 and
ρ|[1/8,8] = 1. Note that Lip(ρ) 6 16. Fix t ∈ {0, 1, . . . , dlog2 ne − 1} where n = |X|. For x ∈ X, let

R(x, t) = sup
{
R > 0, |BR(x)| 6 2t

}
.

The map x 7→ R(x, t) is 1-Lipschitz: given x, y ∈ X, if |BR(x)| 6 2t, then
∣∣∣BR−d(x,y)(y)

∣∣∣ 6 2t, so that
R(y, t) > R − d(x, y). By taking the supremum over R, we have R(y, t) > R(x, t) − d(x, y), from
which it follows by symmetry that

|R(x, t)−R(y, t)| 6 d(x, y).

Define

Ht : x ∈ X 7−→
(
ρ

(
R(x, t)

2`

)
h`(x)

)
`∈Z
∈

⊕
`∈Z

`q


q

∼= `q.

This is well-defined: if x ∈ X, then ρ
(
R(x,t)

2`
)

= 0 if R(x, t) 6 2`−4 or R(x, t) > 2`+4. Choose m ∈ Z
such that 2m 6 R(x, t) < 2m+1. Then ρ

(
R(x,t)

2`
)

= 0 if ` > m+ 5 or ` 6 m− 4. It follows that Ht(x)
has at most eight nonzero coordinates, so Ht(x) ∈ (⊕`∈Z `q)q.

Next, we show that Ht is Lipschitz with Lip (Ht) 6 16 · 17. Indeed, for ` ∈ Z,∥∥∥∥∥ρ
(
R(x, t)

2`

)
h`(x)− ρ

(
R(y, t)

2`

)
h`(y)

∥∥∥∥∥
q

6

∣∣∣∣∣ρ
(
R(x, t)

2`

)
− ρ

(
R(y, t)

2`

)∣∣∣∣∣ ‖h`(x)‖q

+ ρ

(
R(y, t)

2`

)
‖h`(y)− h`(x)‖q

6 16
∣∣∣∣∣R(x, t)

2` − R(y, t)
2`

∣∣∣∣∣ ‖h`(x)‖q + ‖h`(x)− h`(y)‖q

6
16
2` d(x, y) · 2` + d(x, y) = 17d(x, y).

Since both Ht(x) and Ht(y) have at most eight nonzero coordinates, Ht is (16 · 17)-Lipschitz. Now
define

H : x ∈ X 7−→ (Ht(x))06t<dlog2 ne
∈

dlog2 ne−1⊕
t=0

`q


q

∼= `q.

It is clear that Lip(H) . (log n)1/q, proving (i).
For (ii), fix x, y ∈ X and choose ` ∈ Z such that d(x, y) ∈

[
2`, 2`+1

)
. Thus the inequality

‖Ht(x)−Ht(y)‖q > ‖h`(x)− h`(y)‖q (∗)

holds provided that ρ
(
R(x,t)

2`
)

= ρ
(
R(y,t)

2`
)

= 1, which holds if R(x, t), R(y, t) ∈
[
2`−3, 2`+3

]
. This will

follow if |B2`−3(x)| 6 2t and |B2`+3(x)| > 2t, and similarly for y. So (∗) holds for all t such that

2t ∈ [|B2`−3(x)| , |B2`+3(x)|) ∩ [|B2`−3(y)| , |B2`+3(y)|) .

Without loss of generality, we may assume that γ`−3(x, y) = x (i.e. |B2`−3(x)| > |B2`−3(y)|). Since
d(x, y) < 2`+1, we have B2`+1(x) ⊆ B2`+3(y), so (∗) holds if 2t ∈ [|B2`−3(x)| , |B2`+1(x)|). Hence,

‖H(x)−H(y)‖q =
dlog2 ne−1∑

t=0
‖Ht(x)−Ht(y)‖qq

1/q

>

(
log2
|B2`+1(x)|
|B2`−3(x)|

)1/q

‖h`(x)− h`(y)‖q .
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Lemma 3.19. Let 1 6 q <∞. Then there exists H : X → `q such that

(i) Lip(H) . (log |X|)1/q,

(ii) For all x, y ∈ X and ` ∈ Z such that d(x, y) ∈
[
2`, 2`+1

)
, if log2

|B2`−1 (x)|
|B2`−2 (x)| < 1, then

‖H(x)−H(y)‖q > d(x, y).

Proof. Fix t ∈ {1, 2, . . . , dlog2 ne} where n = |X|. LetW be a random subset of X where each x ∈ X
is placed in W independently at random with probability 2−t. Let Pt be the resulting probability
measure on the power set P(X). Hence

Pt(W ) = 2−t|W |
(
1− 2−t

)n−|W |
for any W ⊆ X. Note that there is an isomorphism

Lq (P(X),Pt) ∼= `2n
q

given by g 7→
(
Pt(W )1/qg(W )

)
W∈P(X)

. Define

Ht : x ∈ X 7−→ (d(x,W ))W∈P(X) ∈ Lq (P(X),Pt) ∼= `2n
q .

Then for all x, y ∈ X,

‖Ht(x)−Ht(y)‖q =
(∫
P(X)
|d(x,W )− d(y,W )|q dPt(W )

)1/q

6 d(x, y),

so Ht is 1-Lipschitz.
Now define

H : x ∈ X 7−→ (Ht(x))16t6dlog2 ne
∈

dlog2 ne⊕
t=1

`2n
q


q

↪→∼= `q.

Then Lip(H) . (log n)1/q, showing (i).
For (ii), fix x, y ∈ X and ` ∈ Z such that d(x, y) ∈

[
2`, 2`+1

)
and log2

|B2`−1 (x)|
|B2`−2 (x)| < 1. Fix

s ∈ {1, 2, . . . , dlog2 ne} s.t. |B2`−1(x)| ∈ [2s−1, 2s]. Note that |B2`−2(x)| ∈ [2s−2, 2s]. Consider the four
events:

Ex =
{
W ∈ P(X), d(x,W ) 6 2`−2

}
= {W ∈ P(X), W ∩B2`−2(x) 6= ∅} ,

Fx =
{
W ∈ P(X), d(x,W ) > 2`−1

}
= {W ∈ P(X), W ∩B2`−1(x) = ∅} ,

Ey =
{
W ∈ P(X), d(y,W ) 6 3

22`−2
}

=
{
W ∈ P(X), W ∩B 3

2 2`−2(y) 6= ∅
}
,

Fy = P(X)\Ey =
{
W ∈ P(X), W ∩B 3

2 2`−2(y) = ∅
}
.

Since d(x, y) > 2`, B2`−1(x) ∩ B 3
2 2`−2(y) = ∅, and hence any of Ex, Fx is independent from Ey, Fy.

Using the fact that
((

1− 1
k

)k)
k>1

is increasing and converges to e−1, we have

Ps (Ex) = 1−
(
1− 2−s

)|B2`−2 (x)|
> 1−

(
1− 2−s

)2s−2

> 1− e−1/4 > 0,

Ps (Fx) =
(
1− 2−s

)|B2`−1 (x)|
>
(
1− 2−s

)2s
>
(

1− 1
2

)2
= 1

4 > 0.

25



Therefore,

‖H(x)−H(y)‖q > ‖Hs(x)−Hs(y)‖q

=
(∫
P(X)
|d(x,W )− d(y,W )|q dPs(W )

)1/q

>

(∫
Ex∩Fy

|d(x,W )− d(y,W )|q dPs(W ) +
∫
Ey∩Fx

|d(x,W )− d(y,W )|q dPs(W )
)1/q

&
(
2(`−3)qPs (Fy) + 2(`−3)qPs (Ey)

)1/q
because Ps (Ex ∩ Fy) = Ps (Ex)Ps (Fy), etc.

> 2`+1 > d(x, y).

Theorem 3.20 (Glueing Lemma). Let 1 6 q < ∞ and K > 0. Assume that for all ` ∈ Z, there is
a scale-2` embedding f` : X → `q of deficiency K and such that ‖f`(x)‖ 6 2` for all x ∈ X. Then

cq(X) . K1−1/q (log |X|)1/q .

Proof. Apply Lemma 3.18 with h` = f` to get H which we will call F : X → `q such that Lip(F ) .
(log n)1/q (where n = |X|) and, for all x, y ∈ X and ` ∈ Z, if d(x, y) ∈

[
2`, 2`+1

)
, then

‖F (x)− F (y)‖q >
(

log2
|B2`+1 (γ`−3(x, y))|
|B2`−3 (γ`−3(x, y))|

)1/q

‖f`(x)− f`(y)‖q︸ ︷︷ ︸
> 1
K
d(x,y)

.

From Theorem 3.15 and Lemma 3.7, we get for all ` ∈ Z a 1-Lipschitz map g` : X → `q such that
‖g`(x)‖q 6 2` and for all x, y ∈ X, if d(x, y) ∈

[
2`, 2`+1

)
, then

‖g`(x)− g`(y)‖ &
(

1 + log
(
|B2`(x)|
|B2`−3(x)|

))−1

d(x, y).

Apply Lemma 3.18 with h` = g` to get H which we call G satisfying (i) and (ii) of Lemma 3.18. Let
H be the function from Lemma 3.19. Define

Φ : x ∈ X 7−→ (F (x), G(x), H(x)) ∈ (`q ⊕ `q ⊕ `q)q ∼= `q.

Clearly, Lip(Φ) . (log n)1/q.
Fix x, y ∈ X and ` ∈ Z such that d(x, y) ∈

[
2`, 2`+1

)
. Let A = |B2`+1 (x)|

|B2`−3 (x)| and assume for example
that γ`−3(x, y) = x. If A < 1, then by Lemma 3.19, ‖H(x)−H(y)‖q & d(x, y). If A > 1, then

‖F (x)− F (y)‖q > A1/q 1
K
d(x, y),

‖G(x)−G(y)‖q >
A1/q

1 + A
d(x, y).

Considering the cases A > K and A 6 K, we get a lower bound
(
K1−1/q

)−1
d(x, y), so dist(Φ) .

K1−1/q (log n)1/q.

Corollary 3.21 (Bourgain’s Embedding Theorem). For any finite metric space X,

c2(X) . log |X| .

Proof. By Theorem 3.15, there exists an
(
ε, 2`

)
-padded decomposition of X for all ` ∈ Z, with

ε(x) & 1
log|X| . By Lemma 3.7, for all ` ∈ Z, there exists a scale-2` embedding f` : X → `2 with

deficiency K . log |X| and ‖f`(x)‖ 6 2` for all x ∈ X. It follows by Theorem 3.20 that

c2(X) . (log |X|)1−1/2 (log |X|)1/2 = log |X| .
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4 Lower bounds on distortion and Poincaré inequalities

4.1 John’s Lemma
Remark 4.1. Bourgain’s Embedding Theorem (Corollary 3.21) shows that c2(X) . log |X| for any
finite metric space X. One might wonder if this is the best possible.

Definition 4.2 (Banach-Mazur distance). Given two normed spaces X, Y , we define the Banach-
Mazur distance between them by

d(X, Y ) = inf
T :X→Y

linear isomorphism

‖T‖ ·
∥∥∥T−1

∥∥∥ ∈ [1,∞] .

Proposition 4.3. Let X, Y, Z be normed spaces.

(i) d(X,Z) 6 d(X, Y )d(Y, Z).

(ii) If X ∼= Y (isometric isomorphism), then d(X, Y ) = 1, but the converse is false in general.

Definition 4.4 (Banach-Mazur compactum). Let Mn be the class of isometric isomorphism types
of n-dimensional normed spaces. OnMn, log d is a metric such thatMn is compact. It is called the
Banach-Mazur compactum.

Theorem 4.5 (John’s Lemma). If X is an n-dimensional normed space, then

d (X, `n2 ) 6
√
n.

Proof. We may assume that X is Rn with some norm ‖·‖. Let

K = BX = {x ∈ X, ‖x‖ 6 1} .

Note that K is a convex and symmetric (i.e. −K = K) body (i.e. it is compact with nonempty
interior). Conversely, if K is a symmetric convex body, then K is the unit ball of a norm ‖·‖ on Rn

defined by
‖x‖ = inf {t > 0, x ∈ tK} .

An ellipsoid is a subset E ⊆ Rn such that E = T
(
B`n2

)
, where T : Rn → Rn is a linear isomorphism.

Now note that
d (X, `n2 ) 6

√
n⇐⇒ ∃E ellipsoid, n−1/2E ⊆ K ⊆ E.

Therefore, the theorem we want to prove is equivalent to: for every symmetric convex body K ⊆ Rn,
there is an ellipsoid E ⊆ Rn such that n−1/2E ⊆ K ⊆ E.

Let K ⊆ Rn be a symmetric convex body. By compactness, there exists an ellipsoid E of
minimal volume such that K ⊆ E. By applying a linear isomorphism, we may assume without loss
of generality that E = B`n2

. Now assume for contradiction that n−1/2E 6⊆ K. Then there exists
z ∈ ∂K = SX such that ‖z‖2 <

1√
n
. By Hahn-Banach, there is a linear functional f : Rn → R such

that f(z) = 1 and ‖f(x)‖ 6 1 for all x ∈ K. Consider

H = {x ∈ Rn, f(x) = 1} 3 z.

K lies between H and −H. After applying a rotation, we may assume without loss of generality that

H =
{
x ∈ Rn, x1 = 1

c

}
for some c >

√
n (because H contains a point z with ‖z‖2 <

1√
n
). Given a > b > 0, consider the

ellipsoid

Ea,b =
{
x ∈ Rn, a2x2

1 +
n∑
i=2

b2x2
i 6 1

}
,
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i.e. the image of E = B`n2
under the linear map with matrix diag (a−1, b−1, . . . , b−1). It follows that

vol (Ea,b) = 1
abn−1 vol (E) .

For x ∈ K ⊆ E, we have

a2x2
1 +

n∑
i=2

b2x2
i 6

(
a2 − b2

)
x2

1 + b2 ‖x‖2
2 6

a2 − b2

c2 + b2.

We claim that there exist a > b > 0 such that a2−b2

c2 + b2 6 1 and abn−1 > 1. If the claim is true,
then vol (Ea,b) < vol (E) and K ⊆ Ea,b, contradicting the minimality of vol(E).

To prove the claim, fix a ∈ (0, c) and set b =
√

c2−a2

c2−1 . Then a2−b2

c2 + b2 = 1; let f(a) = abn−1 =

a
(
c2−a2

c2−1

)n−1
2 . We have f(1) = 1 and

f ′(a) =
(
c2 − a2

c2 − 1

)n−1
2

+ a
n− 1

2 · −2a
c2 − 1

(
c2 − a2

c2 − 1

)n−3
2

=
(
c2 − a2

c2 − 1

)n−3
2
(
c2 − a2

c2 − 1 −
(n− 1)a2

c2 − 1

)

=
(
c2 − a2

c2 − 1

)n−3
2 c2 − na2

c2 − 1 .

Since c2 > n, f ′(1) > 0, so there exists a > 1 such that f(a) > f(1) = 1. This concludes the
proof.

Remark 4.6. (i) If X, Y are n-dimensional normed spaces, then d(X, Y ) 6 n. In fact, Gluskin
proved that diamMn & n. Therefore, according to John’s Lemma, `n2 can be thought of as the
centre ofMn.

(ii) For a finite metric space X, the analogue of dimension is log |X|. By analogy with John’s
Lemma, one might hope that c2(X) .

√
log |X|.

4.2 Poincaré inequalities
Definition 4.7 (Poincaré inequality). Let X, Y be metric spaces. A Poincaré inequality for functions
f : X → Y is an inequality of the form∑

u,v∈X
auvΨ (d (f(u), f(v))) >

∑
u,v∈X

buvΨ (d (f(u), f(v))) , (∗)

where a, b are finitely-supported functions X ×X → R+ and Ψ is an increasing function R+ → R+.
The Poincaré ratio is defined by

Pa,b,Ψ(X) =
∑
u,v∈X buvΨ (d(u, v))∑
u,v∈X auvΨ (d(u, v)) ,

whenever this makes sense.

Proposition 4.8. Let Ψ(t) = tp, with 1 6 p < ∞. Assume that X, Y are metric spaces satisfying
the Poincaré inequality (∗) for some a, b, for all maps f : X → Y . Then

cY (X) > (Pa,b,tp(X))1/p .
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Proof. Let f : X → Y be a bilipschitz embedding. Then

1 >
∑
u,v∈X buv (d (f(u), f(v)))p∑
u,v∈X auv (d (f(u), f(v))p) >

1
dist(f)p

∑
u,v∈X buv (d(u, v))p∑
u,v∈X auv (d(u, v))p = Pa,b,tp(X)

(dist(f))p .

Hence dist(f) > (Pa,b,tp(X))1/p. Taking the infimum over all f gives the result.

Example 4.9 (Short Diagonal Lemma). In `2,

‖x1 − x3‖2
2 + ‖x2 − x4‖2

2 6 ‖x1 − x2‖2
2 + ‖x2 − x3‖2

2 + ‖x3 − x4‖2
2 + ‖x4 − x1‖2

2 ,

for all x1, . . . , x4 ∈ `2. This is a Poincaré inequality for functions C4 → `2. By Proposition 4.8,

c2 (C4) >
√

2.

In fact, c2 (C4) =
√

2.

4.3 Hahn-Banach Theorem
Definition 4.10 (Positive homogeneous and subadditive functionals). Let X be a real vector space.
A functional p : X → R is said to be

(i) Positive homogeneous if p (tx) = tp(x) for all t > 0 and x ∈ X,

(ii) Subadditive if p(x+ y) 6 p(x) + p(y) for all x, y ∈ X.

For instance, a seminorm on X is both positive homogeneous and subadditive.

Theorem 4.11 (Hahn-Banach). Let X be a real vector space and p : X → R be a positive homo-
geneous subadditive functional. If Y is a subspace of X and g : Y → R is a linear map such that
g 6 p|Y , then there exists a linear map f : X → R such that f|Y = g and f 6 p.

Proof. The proof is similar to that of Lemma 2.13.
Consider the set P of pairs (Z, h), where Z is a subspace of X containing Y , h : Z → R is linear,

h|Y = g and h 6 p|Z . This is a poset with (Z1, h1) 6 (Z2, h2) if and only if Z1 ⊆ Z2 and h2|Z1 = h1.
Note that (Y, g) ∈ P , so P 6= ∅. Moreover, given a nonempty chain C = {(Zi, hi) , i ∈ I} ⊆ P , set
Z = ⋃

i∈I Zi and define h : Z → R by h|Zi = hi for all i ∈ I. Hence (Z, h) is an upper bound for C.
By Zorn’s Lemma, P has a maximal element (W,k). It suffices to show that W = X. Assume

not and take x0 ∈ X\W ; let W1 = W ⊕ Rx0. Given α ∈ R (to be chosen later), define k1 : W1 → R
by

k1 (w + λx0) = k(w) + λα

for w ∈ W and λ ∈ R. If we can choose α in such a way that k1 6 p|W1 , then we will have
(W,k) < (W1, k1), which will contradict the maximality of (W,k). Note that k is linear and p is
positive homogeneous, so it suffices to find α ∈ R such that, for all w ∈ W ,

k1 (w + x0) 6 p (w + x0) and k1 (w − x0) 6 p (w − x0) .

In other words, we need k(w) + α 6 p (w + x0) and k(w) − α 6 p (w − x0) for all w ∈ W , or
equivalently,

k(z)− p (z − x0) 6 α 6 −k(w) + p (w + x0) ,
for all w, z ∈ W . Therefore, it suffices to show that

sup
z∈W

(k(z)− p (z − x0)) 6 inf
w∈W

(−k(w) + p (w + x0)) .

But this is true because, for w, z ∈ W ,

k(z) + k(w) = k(z + w) 6 p(z + w) = p (z − x0 + w + x0) 6 p (z − x0) + p (w + x0) .
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Corollary 4.12 (Hahn-Banach Extension Theorem). Let X be a real normed space.

(i) If Y is a subspace of X and g ∈ Y ∗, then there exists f ∈ X∗ such that f|Y = g and ‖f‖ = ‖g‖.

(ii) Given x0 ∈ X\{0}, there exists f ∈ SX∗ such that f (x0) = ‖x0‖.

Proof. (i) Define p(x) = ‖g‖ · ‖x‖. Then p is a seminorm (hence it is positive homogeneous and
subadditive), and we have g(y) 6 p(y) for all y ∈ Y . By Theorem 4.11, there exists f : X → R linear
such that f|Y = g and f(x) 6 ‖g‖ · ‖x‖. Applying the last inequality to −x yields −f(x) 6 ‖g‖ · ‖x‖,
from which it follows that |f(x)| 6 ‖g‖ ·‖x‖, i.e. f ∈ X∗ and ‖f‖ 6 ‖g‖. But f|Y = g, so ‖f‖ = ‖g‖.

(ii) Let Y = Rx0 and define g : Y → R by g (λx0) = λ ‖x0‖ for λ ∈ R. Then g ∈ Y ∗ and ‖g‖ = 1,
so by (i), there exists f ∈ SX∗ such that f|Y = g; in particular f (x0) = ‖x0‖.

Remark 4.13. If Z is a complex vector space, let ZR be Z viewed as a real vector space. Then for
a complex normed space, the map (X∗)R → (XR)∗ given by f 7→ <(f) is an isometric embedding.

This allows one to extend the Hahn-Banach Theorem to the complex case.

4.4 Hahn-Banach Separation Theorem
Definition 4.14 (Minkowski functional). Given a normed space X and a convex subset C ⊆ X with
0 ∈ C̊, the Minkowski functional of C is

µC : x ∈ X 7−→ inf {t > 0, x ∈ tC} ∈ R.

This is well-defined due to the fact that 0 ∈ C̊.

Example 4.15. If C = BX , then µC = ‖·‖.

Lemma 4.16. Let X be a normed space and C ⊆ X be a convex subset with 0 ∈ C̊. Then the
Minkowski functional µC is positive homogeneous and subadditive. Moreover,

{x ∈ X, µC(x) < 1} ⊆ C ⊆ {x ∈ X, µC(x) 6 1} ,

where the first inclusion is an equality if C is open, and the second one is an equality if C is closed.

Proof. Positive homogeneity. Let t > 0 and x ∈ X. If t = 0, then 0 ∈ sC for all s > 0, so µC(0) = 0.
If t > 0, then for any s > 0, we have tx ∈ sC if and only if x ∈ s

t
C, so µC(tx) = tµC(x).

Subadditivity. Fix x, y ∈ X and let s > µC(x) and t > µC(y). By definition, there exists
µC(x) 6 s′ 6 s such that x ∈ s′C. Thus

x

s
= s′

s
· x
s′

+
(

1− s′

s

)
· 0 ∈ C

since C is convex, so x ∈ sC. Similarly, y ∈ tC. Therefore,

x+ y

s+ t
= s

s+ t
· x
s

+ t

s+ t
· y
t
∈ C.

This shows that µC(x + y) 6 s + t. By taking the infimum over s and t, we obtain µC(x + y) 6
µC(x) + µC(y).

Inclusions. If µC(x) < 1, then by the above, x ∈ C, so {x, µC(x) < 1} ⊆ C. If x ∈ C, then
µC(x) 6 1 by definition, so C ⊆ {x, µC(x) 6 1}.

Equality case when C is open. If x ∈ C, then since
(
1 + 1

n

)
x −−−→

n→∞
x and C is open, there exists

n > 1 such that
(
1 + 1

n

)
x ∈ C, so x ∈ n

n+1C and µC(x) 6 n
n+1 < 1.

Equality case when C is closed. If µC(x) 6 1, then µC
(

n
n+1x

)
6 n

n+1 < 1 for all n > 1, so
n
n+1x ∈ C for all n > 1. Since n

n+1x −−−→n→∞
x and C is closed, x ∈ C.
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Remark 4.17. In Lemma 4.16, if C is symmetric, then µC is in fact a seminorm. If in addition C
is bounded, then µC is a norm. We used this in the proof of John’s Lemma (Theorem 4.5).

Theorem 4.18. Let X be a real normed space. Let C be an open convex subset of X containing 0
and let x0 ∈ X\C. Then there exists f ∈ X∗ such that f(x) < f (x0) for all x ∈ C (note in particular
that f 6= 0).
Proof. Let Y = Rx0 and define g : Y → R by g (λx0) = λµC (x0). Then g is linear, and we have

∀λ > 0, g (λx0) = λµC (x0) = µC (λx0) ,
∀λ 6 0, g (λx0) = λµC (x0) 6 0 6 µC (λx0) ,

so g 6 µC |Y . But µC is positive homogeneous and subadditive by Lemma 4.16, so Theorem 4.11
implies that there exists f : X → R linear such that f|Y = g and f 6 µC .

Since x0 6∈ C, µC (x0) > 1. Therefore, as C is open, we have

∀x ∈ C, f(x) 6 µC(x) < 1 6 µC (x0) = f (x0) .

Furthermore, 0 ∈ C = C̊, so there exists δ > 0 such that δBX ⊆ C, hence |f(x)| 6 1 on δBX , so
f ∈ X∗.
Corollary 4.19 (Hahn-Banach Separation Theorem). Let A,B be nonempty disjoint convex sets in
a normed space X.

(i) If A is open, then there exist f ∈ X∗ and α ∈ R such that, for all a ∈ A and b ∈ B,

f(a) < α 6 f(b).

(ii) If A is compact and B is closed, then there exists f ∈ X∗ and α ∈ R such that

sup
A
f < α < inf

B
f.

In both cases, the hyperplane {x ∈ X, f(x) = α} separates A and B.

Proof. (i) Fix a0 ∈ A and b0 ∈ B, set x0 = −a0 + b0. Let

C = A−B + x0 = {(a− b) + x0, a ∈ A, b ∈ B} .

Then C is convex and open (because A is open), 0 ∈ C and x0 6∈ C (since A∩B = ∅). By Theorem
4.18, there exists f ∈ X∗ such that, for all x ∈ C, f(x) < f (x0). Hence, for all a ∈ A and for all
b ∈ B,

f (a− b+ x0) < f (x0) ,
or in other words f(a) < f(b). Set α = infB f . Certainly f(b) > α for all b ∈ B. Also, f(a) 6 α for
all a ∈ A. Since f 6= 0, we can fix u ∈ X such that f(u) > 0. Now for a ∈ A, since A is open, there
exists n > 1 such that a+ 1

n
u ∈ A; it follows that

f(a) < f(a) + 1
n
f(u) = f

(
a+ 1

n
u
)
6 α.

(ii) For a ∈ A, d (a,B) > 0 since B is closed and a 6∈ B. Since A is compact, we set

δ = inf
a∈A

d (a,B) > 0.

Then A′ = {x ∈ X, d (x,A) < δ} is an open convex set with A′∩B = ∅. By (i), there exists f ∈ X∗
and β ∈ R such that

f (a′) < β 6 f(b)
for all a′ ∈ A′ and b ∈ B. As A is compact, supA f < β 6 infB f , so it suffices to choose supA f <
α < β.
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4.5 Optimality of Poincaré inequalities
Theorem 4.20. Let 1 6 p <∞ and let X be a finite metric space. Then

cp(X) = sup (Pa,b,tp(X))1/p ,

where the supremum is taken over all nonnegative nontrivial X × X matrices a, b for which the
Poincaré inequality ∑

u,v∈X
auv ‖f(u)− f(v)‖pp >

∑
u,v∈X

buv ‖f(u)− f(v)‖pp , (∗)

holds for all functions f : X → Lp.

Proof. The inequality (>) follows from Proposition 4.8. It remains to prove (6).
Note that, taking auv = buv = 1 for all u, v ∈ X, the inequality (∗) holds trivially, and Pa,b,tp(X) =

1, so if cp(X) = 1, then we are done.
Now assume that 1 < c < cp(X). Write X = {x1, . . . , xn}. Consider the set

B =
{(
‖f (xi)− f (xj)‖pp

)
16i<j6n

, f : X → Lp

}
⊆ RN ,

with N =
(
n
2

)
. From the proof of Theorem 2.24, we know that B is a cone (and hence B is convex),

and B 6= ∅ (for instance, 0 ∈ B). Let

A =
{

(θij)16i<j6n ∈ RN , ∃r > 0, ∀i, j, r · d (xi, xj)p < θij < rcp · d (xi, xj)
}
.

Then A is open, convex, and nonempty since c > 1. Moreover, A ∩ B = ∅ since c < cp(X). By the
Hahn-Banach Separation Theorem (Corollary 4.19), there exists a linear map λ : RN → R and an
α ∈ R such that

λ(θ) < α 6 λ(ϕ)
for all θ ∈ A and ϕ ∈ B. Note that 0 ∈ B, so α 6 0. Moreover, by continuity of λ, λ(θ) 6 α for all
θ ∈ A. But 0 ∈ A, so 0 6 α; hence α = 0. Now we can write λ = (λij)16i<j6n, where

λ(θ) =
∑

16i<j6n
λijθij.

Set aij = max {λij, 0} and bij = max {−λij, 0}, so that λij = aij − bij. For f : X → Lp, we have∑
16i<j6n

λij ‖f (xi)− f (xj)‖pp > 0,

or in other words, ∑
16i<j6n

aij ‖f (xi)− f (xj)‖pp >
∑

16i<j6n
bij ‖f (xi)− f (xj)‖pp .

This is a Poincaré inequality. Define

θij =
cp · d (xi, xj)p if λij > 0
d (xi, xj)p if λij < 0

.

Then θ = (θij)16i<j6n ∈ A, so

0 > λ(θ) =
∑

16i<j6n
aijc

p · d (xi, xj)p −
∑

16i<j6n
bij · d (xi, xj)p ,

which proves that Pa,b,tp(X) > cp.
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4.6 Discrete Fourier analysis on the Hamming cube
Notation 4.21. Recall that the Hamming cube is the graph Hn = {0, 1}n, where x = (xi)16i6n and
y = (yi)16i6n are joined by an edge if and only if |{i ∈ {1, . . . , n} , xi 6= yi}| = 1. This makes Hn a
metric space with the graph distance d:

d (x, y) =
n∑
i=1
|xi − yi| .

Hence, Hn is isometrically a subset of `n1 .
Hn is also a probability space with the uniform distribution µ:

µ ({x}) = 2−n.

Thinking of {0, 1} as the field F2, Hn is the n-dimensional vector space Fn2 over F2; in particular,
Hn is an abelian group. Let (ei)16i6n be the standard basis of Hn = Fn2 .

Definition 4.22 (Rademacher functions and Walsh functions). For 1 6 j 6 n, define

rj : x ∈ Hn 7−→ (−1)xj ∈ R.

rj is the j-th Rademacher function. Note that r1, . . . , rn are independent and identically distributed
random variables on (Hn, µ) with {±1}-valued Bernoulli distributions with parameter 1

2 .
For A ⊆ {1, . . . , n}, we define wA : Hn → R by

wA =
∏
j∈A

rj.

The functions (wA)A⊆{1,...,n} are called the Walsh functions. These are in fact the characters of Hn,
i.e. the homomorphisms Hn → S1.

Lemma 4.23. The Walsh functions form an orthonormal basis of L2 (Hn, µ)

Proof. Since r2
j = 1 for all j, we have, for A,B ⊆ {1, . . . , n},

wAwB =
∏
j∈A

rj ·
∏
j∈B

rj =
∏

j∈A4B
rj = wA4B.

Hence,
〈wA, wA〉 =

∫
Hn
wAwA dµ =

∫
Hn
w∅ dµ = 1.

Likewise, if A 6= B, using the independence of the (rj)16j6n,

〈wA, wB〉 =
∫
Hn
wA4B dµ =

∏
j∈A4B

∫
Hn
rj dµ︸ ︷︷ ︸
=0

= 0.

This proves the result since dimL2 (Hn, µ) = 2n.

Definition 4.24 (Fourier coefficients). Given a function f : Hn → R, define

f̂A = 〈f, wA〉 =
∫
Hn
fwA dµ ∈ R.

The real numbers
(
f̂A
)
A⊆{1,...,n}

are called the Fourier coefficients of f .
More generally, given a Banach space X and a function f : Hn → X, we can define f̂A =∫

Hn
fwA dµ.
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Lemma 4.25. (i) Let f ∈ L2 (Hn, µ). Then for all x ∈ Hn,

f(x) =
∑

A⊆{1,...,n}
f̂AwA(x).

Moreover, we have Parseval’s identity:∫
Hn
|f(x)|2 dµ(x) =

∑
A⊆{1,...,n}

∣∣∣f̂A∣∣∣2 .

(ii) Let f : Hn → X, where X is a Banach space. Then for all x ∈ Hn,

f(x) =
∑

A⊆{1,...,n}
f̂AwA(x).

If in addition X is a Hilbert space, then we have Parseval’s identity:∫
Hn
‖f(x)‖2 dµ(x) =

∑
A⊆{1,...,n}

∥∥∥f̂A∥∥∥2
.

Proof. (i) Follows from Lemma 4.23.
(ii) Let x ∈ Hn be fixed. Given ϕ ∈ X∗, we have

ϕ
(
f̂A
)

=
∫
Hn
ϕ (f(x))wA(x) dµ(x) = (̂ϕ ◦ f)A

for all A ⊆ {1, . . . , n}. It follows by (i) that

ϕ (f(x)) =
∑

A⊆{1,...,n}
(̂ϕ ◦ f)AwA(x) = ϕ

 ∑
A⊆{1,...,n}

f̂AwA(x)
 .

Since this is true for all ϕ ∈ X∗, the Hahn-Banach Theorem implies that f(x) = ∑
A⊆{1,...,n} f̂AwA(x).

IfX is a Hilbert space, then we may assume without loss of generality that dimX is finite (because
Hn is finite). Fix an orthonormal basis v1, . . . , vk of X. Then, for 1 6 j 6 k, let fj(x) = 〈f(x), vj〉.
The above implies that

(̂fj)A =
〈
f̂A, vj

〉
.

Using Parseval’s identity in the Hilbert space X and in L2 (Hn, µ) (by (i)), we have
∫
Hn
‖f(x)‖2 dµ(x) =

∫
Hn

k∑
j=1
|fj(x)|2 dµ(x) =

k∑
j=1

∑
A⊆{1,...,n}

∣∣∣(̂fj)A∣∣∣2

=
∑

A⊆{1,...,n}

k∑
j=1

∣∣∣〈f̂A, vj〉∣∣∣2 =
∑

A⊆{1,...,n}

∥∥∥f̂A∥∥∥2
.

Definition 4.26 (Difference operators). Let X be a Banach space. For each 1 6 j 6 n, we define a
difference operator ∂j as follows: for all f : Hn → X, we set

∂jf : x ∈ Hn 7−→
1
2 (f (x+ ej)− f(x)) ∈ X.

Lemma 4.27. (i) For 1 6 j 6 n and A ⊆ {1, . . . , n},

∂jwA(x) = −1A(j)wA(x).
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(ii) Given a Banach space X and f : Hn → X,

(̂∂jf)A = −1A(j)f̂A.

(iii) Given a Hilbert space X and f : Hn → X,
n∑
j=1

∫
Hn
‖∂jf(x)‖2 dµ(x) =

∑
A⊆{1,...,n}

|A| ·
∥∥∥f̂A∥∥∥2

.

Proof. (i) Note that the Rademacher functions satisfy

ri (x+ ej) =
−ri(x) if j = i

+ri(x) if j 6= i
.

Hence,

wA (x+ ej) =
∏
i∈A

ri (x+ ej) =
−wA(x) if j ∈ A

+wA(x) if j 6∈ A
.

Hence ∂jwA(x) = −1A(j)wA(x).
(ii) We have

(̂∂jf)A =
∫
Hn

(∂jf) (x)wA(x) dµ(x)

= 1
2

∫
Hn
f (x+ ej)wA(x) dµ(x)− 1

2

∫
Hn
f(x)wA(x) dµ(x)

= 1
2

∫
Hn
f(x)wA (x+ ej) dµ(x)− 1

2

∫
Hn
f(x)wA(x) dµ(x)

=
∫
Hn
f(x) (∂jwA) (x) dµ(x)

= −1A(j)f̂A.

(iii) Using (ii) and Lemma 4.25, we have
n∑
j=1

∫
Hn
‖∂jf(x)‖2 dµ(x) =

n∑
j=1

∑
A⊆{1,...,n}

∥∥∥∥(̂∂jf)A
∥∥∥∥2

=
∑

A⊆{1,...,n}

n∑
j=1

∥∥∥∥(̂∂jf)A
∥∥∥∥2

=
∑

A⊆{1,...,n}
|A| ·

∥∥∥f̂A∥∥∥2
.

4.7 Poincaré inequality for L2-valued functions on Hn

Theorem 4.28. Let e = e1 + · · ·+ en ∈ Hn. Then, for all f : Hn → L2, we have∫
Hn
‖f(x+ e)− f(x)‖2 dµ(x) 6 4

n∑
j=1

∫
Hn
‖∂jf(x)‖2 dµ(x).

Proof. For A ⊆ {1, . . . , n}, note that wA(x + e) = (−1)|A|wA(x). Hence, using Lemmas 4.25 and
4.27,

∫
Hn
‖f(x+ e)− f(x)‖2 dµ(x) =

∫
Hn

∥∥∥∥∥∥
∑

A⊆{1,...,n}
f̂AwA(x+ e)−

∑
A⊆{1,...,n}

f̂AwA(x)
∥∥∥∥∥∥

2

dµ(x)

= 4
∫
Hn

∥∥∥∥∥∥
∑
|A| odd

f̂AwA(x)
∥∥∥∥∥∥

2

dµ(x) = 4
∑
|A| odd

∥∥∥f̂A∥∥∥2

6 4
∑

A⊆{1,...,n}
|A| ·

∥∥∥f̂A∥∥∥2
= 4

n∑
j=1

∫
Hn
‖∂jf(x)‖2 dµ(x).
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Corollary 4.29. c2 (Hn) =
√
n.

Proof. The obvious embedding Hn ⊆ `n2 yields c2 (Hn) 6
√
n. Now Theorem 4.28 gives a Poincaré

inequality for functions Hn → L2, so Proposition 4.8 yields a lower bound on C2 (Hn) obtained from
the Poincaré ratio:

c2 (Hn)2 >

∫
Hn
d (x+ e, x)2 dµ(x)

4∑n
j=1

∫
Hn

1
4d (x+ ej, x)2 dµ(x)

= n2

n
= n.

Remark 4.30. Since |Hn| = 2n, we have c2 (Hn) =
√

log |Hn|. Compare with the upper bound
c2 (X) . log |X| in Bourgain’s Embedding Theorem (Theorem 3.21).

Remark 4.31. From now on, we think of Hn as the n-dimensional vector space Fn2 over F2.

Theorem 4.32. For every f : Fn2 → L2, we have

∫
Fn2×F

n
2

‖f(x)− f(y)‖2 dµ(x) dµ(y) 6 2

min
A 6=∅
f̂A 6=0

|A|


−1

n∑
j=1

∫
Fn2
‖∂jf(x)‖2 dµ(x).

Proof. Without loss of generality, after replacing f with f − f̂∅w∅, we may assume that f̂∅ = 0
(recall that w∅(x) = 1 for all x). Then, using Parseval’s identity,∫

Fn2×F
n
2

‖f(x)− f(y)‖2 dµ(x) dµ(y) =
∫
Fn2×F

n
2

(
‖f(x)‖2 + ‖f(y)‖2 − 2 〈f(x), f(y)〉

)
dµ(x) dµ(y)

= 2
∑

A⊆{1,...,n}

∥∥∥f̂A∥∥∥2
− 2

∫
Fn2

〈
f(y),

∫
Fn2
f(x) dµ(x)︸ ︷︷ ︸

f̂∅

〉
dµ(y)

= 2
∑

A⊆{1,...,n}

∥∥∥f̂A∥∥∥2
.

Now by Lemma 4.27,

n∑
j=1

∫
Fn2
‖∂jf(x)‖2 dµ(x) =

∑
A⊆{1,...,n}

|A| ·
∥∥∥f̂A∥∥∥2

>

min
A 6=∅
f̂A 6=0

|A|

 ∑
A⊆{1,...,n}

∥∥∥f̂A∥∥∥2
.

4.8 Linear codes
Definition 4.33 (Linear codes). A linear code of Fn2 is a subspace C of Fn2 . We let

d(C) = min
x∈C\{0}

d(x, 0) = d (0, C\{0}) .

For x, y ∈ Fn2 , let

〈x, y〉 =
n∑
i=1

xiyi.

This defines a symmetric bilinear form on Fn2 ; however, 〈x, x〉 = 0 does not imply x = 0. For a
subset S ⊆ Fn2 , let

S⊥ = {x ∈ Fn2 , ∀s ∈ S, 〈x, s〉 = 0} .

Lemma 4.34. If C ⊆ Fn2 is a linear code, then

dimC + dimC⊥ = n.

Moreover, C⊥⊥ = C.
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Proof. Let m = dimC and let v1, . . . , vm be a basis of C. Define θ : Fn2 → Fm2 by

θ(x) = (〈x, vi〉)16i6m .

Hence, Ker θ = C⊥, so n = dimC⊥ + rk θ. Therefore, it suffices to prove that θ is onto.
For 1 6 j 6 m, let fj : Fn2 → F2 be a linear map such that fj (vi) = δij. Set yi = fj (ei) and

y = (y1, . . . , yn) ∈ Fn2 . Then fj(x) = ∑n
i=1 xifj (ei) = 〈x, y〉, so θ(y) = (fj (vi))16i6n. This is the j-th

standard basis vector of Fm2 , so θ is onto, proving that rk θ = dimC and therefore n = dimC+dimC⊥.
By definition, C ⊆ C⊥⊥, and

dimC⊥⊥ = n− dimC⊥ = dimC,

so C = C⊥⊥.

Lemma 4.35. There exists δ ∈
(
0, 1

2

)
and N ∈ N such that, for all n > N ,

(bδnc+ 1)
(

n

bδnc

)
6 2n/8.

Proof. First choose δ ∈
(
0, 1

2

)
such that δ

(
2 + log 2

δ

)
< log 2

8 . Then choose N ∈ N such that
bδnc > 1

2δn for all n > N .
Now let n > N and set m = bδnc. If m = 0, it is clear that (m+ 1)

(
n
m

)
= 1 6 2n/8. Assume

that m > 1. Then (
n

m

)
= n(n− 1) · · · (n−m+ 1)

m! 6
nm

m! ,

and

log (m!) =
m∑
j=1

log j >
∫ m

1
log t dt = [t log t− t]m1 = m logm−m+ 1 > m logm−m,

so m! >
(
m
e

)m
and

(
n
m

)
6
(
en
m

)m
. It follows that

log
(

(m+ 1)
(
n

m

))
6 log(m+ 1)︸ ︷︷ ︸

6m

+ log
((

en

m

)m)
6 m︸︷︷︸
6δn

2 + log n

m︸︷︷︸
6 2
δ


6 δn

(
2 + log 2

δ

)
6
n

8 log 2.

Lemma 4.36. There exists α > 0 such that for all n > 1, there is a linear code C ⊆ Fn2 with
dimC > n

4 and d(C) > αn.

Proof. Choose δ ∈
(
0, 1

2

)
and N ∈ N as in Lemma 4.35. If 1 6 n 6 N , choose any linear code C

with dimC > n
4 ; then

d(C) > 1 > n

N
.

Now assume that n > N . We claim that there is a linear code C in Fn2 with dimC > n
4 and

d(C) > δn; hence, setting α = min
{

1
N
, δ
}
will do.

To prove the claim, we show by induction on k 6
⌈
n
4

⌉
that there is a linear code Ck ⊆ Fn2

with dimCk = k and d (Ck) > δn; taking C = Cdn4 e will complete the proof. This is true for
k = 1 (because Fn2 has a point at a distance at least δn from 0). Assume that C1, . . . , Ck have
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been constructed, with k < n
4 . We seek a suitable x ∈ Fn2\Ck such that d (Ck+1) > δn, where

Ck+1 = Ck +F2x = Ck ∪ (Ck + x). We estimate the number of unsuitable vectors x: for v ∈ Ck, then

|{x ∈ Fn2 , d(x+ v, 0) < δn}| = |{x ∈ Fn2 , d(x, 0) < δn}| =
dδne−1∑
`=0

(
n

`

)
6 (m+ 1)

(
n

m

)
,

where m = bδnc 6 n
2 . It follows that

|{x ∈ Fn2 , ∃v ∈ Ck, d(x+ v, 0) < δn}| =
∣∣∣∣∣∣
⋃
v∈Ck
{x ∈ Fn2 , d(x+ v, 0) < δn}

∣∣∣∣∣∣ 6 2k(m+ 1)
(
n

m

)
.

If 2k(m + 1)
(
n
m

)
< 2n − 2k, then |{x ∈ Fn2 , ∀v ∈ Ck, d(x+ v, 0) > δn}| > 2k = |Ck| and therefore

there is a suitable x. In other words, we need

(m+ 1)
(
n

m

)
< 2n−k − 1.

But since k < n
4 , we have 2n−k − 1 > 23n/4 − 1 > 2n/8, so we are done by choice of δ and N .

4.9 Poincaré inequality for L1-valued functions on Fn
2/C

⊥

Notation 4.37. In this section, C ⊆ Fn2 is an arbitrary linear code. We denote by q : Fn2 � Fn2/C⊥
the quotient map, and we let µ̃ be the image measure induced by µ and q:

µ̃(E) = µ
(
q−1(E)

)
.

Moreover, we denote by ρ the quotient metric on Fn2/C⊥:

ρ (qx, qy) = d
(
x+ C⊥, y + C⊥

)
= d

(
x− y, C⊥

)
= min

v∈C⊥
d (x− y, v) .

Lemma 4.38. For every h : Fn2/C⊥ → L2 and for every ∅ ( A ⊆ {1, . . . , n} with |A| < d(C), we
have (̂h ◦ q)A = 0.

Proof. Let f = h◦ q. Set v = ∑
i∈A ei 6= 0. We have d(v, 0) = |A| < d(C), so v 6∈ C = C⊥⊥, i.e. there

exists w ∈ C⊥ such that 〈v, w〉 = 1. Now

f̂A =
∫
Fn2
f(x)wA(x) dµ(x) =

∫
Fn2
f(x+ w)wA(x+ w) dµ(x)

=
∫
Fn2
f(x)

∏
j∈A

rj(x+ w) dµ(x) =
∫
Fn2
f(x)

∏
j∈A

(−1)wjrj(x) dµ(x)

=
∫
Fn2
f(x)(−1)〈v,w〉wA(x) dµ(x) = −f̂A,

so f̂A = 0.

Theorem 4.39. For every h : Fn2/C⊥ → L1, we have
∫
Fn2 /C⊥×F

n
2 /C

⊥
‖h(u)− h(v)‖1 dµ̃(u) dµ̃(v) 6 1

d(C)

n∑
j=1

∫
Fn2 /C⊥

‖∂jh(u)‖1 dµ̃(u), (∗)

where ∂jh(u) = 1
2 (h (u+ qej)− h(u)) for u ∈ Fn2/C⊥.
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Proof. Let f = h ◦ q. Then (∗) is equivalent to
∫
Fn2×F

n
2

‖f(x)− f(y)‖1 dµ(x) dµ(y) 6 1
d(C)

n∑
j=1

∫
Fn2
‖∂jf(x)‖1 dµ(x).

The proof of Proposition 1.31 implies the existence of a map T : L1 → L2 such that

‖a− b‖1 = ‖Ta− Tb‖2
2 .

Therefore, by Theorem 4.32 and Lemma 4.38∫
Fn2×F

n
2

‖f(x)− f(y)‖1 dµ(x) dµ(y) =
∫
Fn2×F

n
2

‖T ◦ f(x)− T ◦ f(y)‖2
2 dµ(x) dµ(y)

6 2

 min
A 6=∅

(̂Tf)A 6=0

|A|


−1

n∑
j=1

∫
Fn2
‖∂jTf(x)‖2

2 dµ(x)

6
2

d(C)

n∑
j=1

∫
Fn2
‖∂jTf(x)‖2

2 dµ(x)

= 1
d(C)

n∑
j=1

∫
Fn2
‖∂jf(x)‖1 dµ(x),

because ‖∂jTf(x)‖2
2 = 1

4 ‖Tf (x+ ej)− Tf(x)‖2
2 = 1

4 ‖f (x+ ej)− f(x)‖ = 1
2 ‖∂jf(x)‖1.

4.10 Optimality of Bourgain’s Embedding Theorem
Lemma 4.40. There exists β > 0 such that for all n > 1, if dimC > n

4 , then

µ ({y ∈ Fn2 , ρ (qx, qy) > βn}) > 1
2 ,

for all x ∈ Fn2 , where ρ is the induced metric on Fn2/C⊥.

Proof. Let δ ∈
(
0, 1

2

)
and N ∈ N be as in Lemma 4.35. Without loss of generality, we may assume

that N > 8 and x = 0. Then for 1 6 n 6 N , we have

µ
({
y ∈ Fn2 , ρ (qy, 0) > n

N

})
= µ

(
Fn2\C⊥

)
=

2n −
∣∣∣C⊥∣∣∣

2n = 2n − 2n−dimC

2n >
2n − 2n−1

2n = 1
2 .

Now assume that n > N . For v ∈ C⊥, note that

|{y ∈ Fn2 , d(y, v) < δn}| 6
dδne−1∑
`=0

(
n

`

)
6 (m+ 1)

(
n

m

)
,

where m = bδnc. It follows that

|{y ∈ Fn2 , ρ (qy, 0) < δn}| =
∣∣∣{y ∈ Fn2 , ∃v ∈ C⊥, d(y, v) < δn

}∣∣∣
6
∣∣∣C⊥∣∣∣ (m+ 1)

(
n

m

)

6 23n/42n/8 = 27n/8 6
2n
2 ,

because n > N > 8. Hence, β = min
{
δ, 1

N

}
works.
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Theorem 4.41. There exists η > 0 and a sequence (Xn)n>1 of finite metric spaces such that
|Xn| −−−→

n→∞
∞ and, for all n > 1,

c1 (Xn) > η log |Xn| .

Proof. By Lemma 4.36, for every n > 1, there is a linear code C in Fn2 with dimC > n
4 and d(C) > αn.

Let Xn = Fn2/C⊥, with the quotient metric ρ. We have

|Xn| = 2n−dimC⊥ = 2dimC > 2n/4 −−−→
n→∞

∞.

By Proposition 4.8, a lower bound on C1 (Xn) is given by the Poincaré ratio corresponding to the
inequality in Theorem 4.39. Hence,

c1 (Xn) >
(∫

Xn×Xn
ρ(u, v) dµ̃(u) dµ̃(v)

)
/

 1
d(C)

n∑
j=1

∫
Xn

ρ (u+ qej, u)
2 dµ̃(u)


=
(∫

Fn2×F
n
2

ρ(qx, qy) dµ(x) dµ(y)
)
/

 1
2d(C)

n∑
j=1

∫
Fn2
ρ (q (x+ ej) , x) dµ(x)

 .
It is clear that the denominator is at most n

2d(C) 6
n

2αn = 1
2α . Moreover, Lemma 4.40 implies that,

for each x ∈ Fn2 , ∫
Fn2
ρ (qx, qy) dµ(y) > βn

2 ,

so the numerator is at least βn
2 , from which it follows that

c1 (Xn) > βn

2 ·
2α
1 = αβn > αβ log2 |Xn| .

Remark 4.42. Recall that c2(X) > c1(X) for any finite metric space (c.f. Definition 3.1). Therefore,
Theorem 4.41 implies that the upper bound in Bourgain’s Embedding Theorem (Theorem 3.21) is the
best possible up to a constant.

5 Dimension reduction

5.1 Preliminary results on Gaussian random variables
Proposition 5.1. (i) If Z ∼ N (0, 1), then Z has probability density function 1√

2πe
−x2/2.

(ii) If Z1, . . . , Zn are independent and identically distributed random variables with law N (0, 1),
and x ∈ `n2 with ‖x‖2 = 1, then ∑n

i=1 xiZi ∼ N (0, 1).

Lemma 5.2. Let X be a random variable with E(X) = 0. Assume that for some C > 0 and u0 > 0,
we have E

(
euX

)
6 eCu

2 for all 0 6 u 6 u0. Then

P (X > t) 6 e−
t2
4C

for 0 6 t 6 2Cu0.

Proof. Note that, if 0 < u 6 u0,

P (X > t) = P
(
euX > eut

)
6 e−utE

(
euX

)
6 e−ut+Cu

2
.

Now if 0 6 t 6 2Cu0, apply the above inequality with u = t
2C to obtain

P (X > t) 6 e−
t2
2C+ t2

4C = e−
t2
4C .
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Lemma 5.3. Assume that Z ∼ N (0, 1). Then there are absolute constants C > 0 and u0 > 0 such
that

E
(
eu(Z2−1)

)
6 eCu

2 and E
(
eu(1−Z2)

)
6 eCu

2

for 0 6 u 6 u0.

Proof. We have

E
(
eu(1−Z2)

)
= 1√

2π

∫
R
eu(1−x2)e−x2/2 dx = eu

1√
2π

∫
R
e−

1
2 (2u+1)x2 dx

= eu√
2u+ 1

· 1√
2π

∫
R
e−

y2
2 dy = eu√

2u+ 1

= exp
(
u− 1

2 log (2u+ 1)
)

= exp
(
u2 +O

(
u3
))
,

and a similar computation shows that E
(
eu(Z2−1)

)
6 exp (u2 +O (u3)).

5.2 Johnson-Lindenstrauss Lemma
Remark 5.4. We want to embed n-elements subsets of `2 into `k2 with low distortion. To do this, we
will take a random linear map T : `n2 → `k2 and show that, for each x ∈ `n2 , we have

(1− ε) ‖x‖2 6 ‖Tx‖2 6 (1 + ε) ‖x‖2

with high probability. It will follow that, given x1, . . . , xn ∈ `n2 , we have

(1− ε) ‖xi − xj‖2 6 ‖Txi − Txj‖2 6 (1 + ε) ‖xi − xj‖2

for all i, j with positive probability. In particular, there will be a suitable map {x1, . . . , xn} → `k2.

Lemma 5.5 (Random Projection). Let k, n ∈ N and ε ∈ (0, 1). Define a linear map T : `n2 → `k2
by the k × n matrix

(
1√
k
Zij
)

16i6k
16j6n

, where the (Zij)16i6k
16j6n

are independent and identically distributed

random variables with Zij ∼ N (0, 1) for all i, j. Then there exists a constant c > 0 (independent of
k, n, ε) such that, for all x ∈ `n2 ,

P ((1− ε) ‖x‖2 6 ‖Tx‖2 6 (1 + ε) ‖x‖2) > 1− 2e−ckε2
.

Proof. Fix x ∈ `n2 . We may assume without loss of generality that ‖x‖2 = 1. Then

(Tx)i = 1√
k

n∑
j=1

xjZij

for 1 6 i 6 k. Let Zi = ∑n
j=1 xjZij; then Z1, . . . , Zn are independent and identically distributed

random variables with law N (0, 1). Therefore,

E
(
‖Tx‖2

2

)
=

k∑
i=1

E
(
|(Tx)i|

2
)

= 1
k

k∑
i=1

E
(
Z2
i

)
= 1.

LetW = 1√
k

∑k
i=1 (Z2

i − 1). Then E(W ) = 0 (and in fact Var(W ) = 1). Fix C, u0 as given by Lemma
5.3. Without loss of generality, we may assume that 2Cu0 > 1. Hence, if 0 6 u 6

√
ku0,

E
(
euW

)
=

k∏
i=1

e
u√
k
(Z2

i −1) 6
k∏
i=1

e
Cu2
k = eCu

2
,
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and similarly E
(
e−uW

)
6 eCu

2 if 0 6 u 6
√
ku0. Therefore, by Lemma 5.2,

P (W > t) 6 e−
t2
4C and P (W < −t) 6 e−

t2
4C

for 0 6 t 6 2Cu0︸ ︷︷ ︸
>1

√
k. Hence,

P (1− ε 6 ‖Tx‖2 6 1 + ε) = P
(
(1− ε)2 6 ‖Tx‖2

2 6 (1 + ε)2
)

> P
(

1− ε 6 1
k

k∑
i=1

Z2
i 6 1 + ε

)

= P
(

1− ε 6 1√
k
W + 1 6 1 + ε

)
= P

(
−ε
√
k 6 W 6 ε

√
k
)

> 1− 2e− ε
2k

4C .

Theorem 5.6 (Johnson-Lindenstrauss). There exists a constant C > 0 such that, for all k, n ∈ N
and ε ∈ (0, 1), if k > Cε−2 log n, then any n-element subset of `2 embeds into `k2 with distortion at
most 1+ε

1−ε .

Proof. Choose C > 0 sufficiently large so that, if k, n ∈ N and ε ∈ (0, 1) satisfy k > Cε−2 log n, then

1− 2e−ck2
> 1− 1

n2 ,

where c is the constant of Lemma 5.5. Clearly, C depends only on c. Now let T : `n2 → `k2 be as in
Lemma 5.5. Then, for each x ∈ `n2 ,

P ((1− ε) ‖x‖2 6 ‖Tx‖2 6 (1 + ε) ‖x‖2) > 1− 1
n2 .

Hence, given x1, . . . , xn ∈ `2, we may assume without loss of generality that x1, . . . , xn ∈ `n2 , so that

P

 ⋂
16i,j6n

(1− ε) ‖xi − xj‖2 6 ‖Txi − Txj‖2 6 (1 + ε) ‖xi − xj‖2

 > 1−
(
n

2

)
1
n2 > 0,

so there is a linear map T that has 1+ε
1−ε -distortion on {x1, . . . , xn}.

5.3 Diamond graphs
Remark 5.7. We aim to prove that dimension reduction as in the Johnson-Lindenstrauss Lemma
does not work in `1.

Definition 5.8 (Diamond graphs). The diamond graphs (Dn)n>0 are defined as follows:

• D0 consists of two vertices joined by an edge.

• Dn+1 is obtained from Dn by replacing every edge xy in Dn with a diamond xvyu, where u, v
are new vertices.

We write En = E (Dn) and Vn = V (Dn). Hence, for every n > 0,

|En| = 4n,
|Vn| = 2 + 2 |E0|+ 2 |E1|+ · · ·+ 2 |En−1|

= 2
3 (4n + 2) .
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Observe that |Vn| 6 4n for all n > 1.
We write dn = dDn. For every n > m > 0 and for every x, y ∈ Dm, we have

dn(x, y) = 2n−mdm(x, y).

We also define sets (An)n>1 of non-edges: for n > 1, Dn consists of copies of D1 of the form
xuyv, where xy ∈ En−1, u, v ∈ Vn\Vn−1. Let An consists of all such pairs uv.

We label the vertices as follows:

` rD0 ` r

t

b

D1

We shall also write Dn (`r) for Dn. Hence, Dn+1(`r) consists of four copies of Dn: Dn (t`), Dn (tr),
Dn (b`) and Dn (br). If e, f are two of the edges t`, tr, b`, br, then

V (Dn(e)) ∩ V (Dn(f)) = e ∩ f.

Note that dn(`, r) = 2n for n > 0 and dn(t, b) = 2n for n > 1. Moreover, for x ∈ Dn,

dn(`, x) + dn(x, r) = 2n.

Lemma 5.9. Let G be a connected graph and let f : G → X be a map to a metric space satisfying
dX (f(u), f(v)) 6 C for all uv ∈ E(G). Then f is C-Lipschitz.

Proof. Let a, b ∈ V (G). Then there exists a path a = u0, . . . , um = b in G with m = dG(a, b).
Therefore,

dX (f(a), f(b)) 6
m−1∑
i=0

dX (f (ui) , f (ui+1))︸ ︷︷ ︸
6C

6 mC = C · dG(a, b).

Lemma 5.10. For all n > 0, Dn embeds into `2n
1 with distortion at most 2.

Proof. Recall that the Hamming cubes embed isometrically into `1. Therefore, it suffices to construct
embeddings fn : Dn → Hk2n (with k > 1), which we do by induction on n > 0. Let f0 : D0 → Hk ⊆ `k1
be such that f0(`), f0(r) are neighbours in Hk. So f0 is isometric (and we may choose k = 1, f0(`) = 0
and f0(r) = 1).

Assume fn : Dn → Hk2n ⊆ `k2n
1 has been defined. We define fn+1 : Dn+1 → Hk2n+1 ⊆ `k2n+1

1 as
follows:

• For x ∈ Dn, we let fn+1(x) = (fn(x), fn(x)),

• If xy ∈ En and u, v are the corresponding new vertices in Dn+1, we let

fn+1(u) = (fn(x), fn(y)) and fn+1(v) = (fn(y), fn(x)) .

Observe that, for x, y ∈ Dn, ‖fn+1(x)− fn+1(y)‖1 = 2 ‖fn(x)− fn(y)‖1. Hence, for n > m > 0 and
x, y ∈ Dm,

‖fn(x)− fn(y)‖1 = 2n−m ‖fm(x)− fm(y)‖1 .

We first show that for all n > 0 and for all xy ∈ En,

‖fn(x)− fn(y)‖1 = 1 = dn(x, y).
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We prove this equality by induction on n: the result is clear if n = 0. Assume n > 1. An edge in Dn

is of the form xu, where there exists xy ∈ En−1, and u, v are the corresponding new vertices in Dn.
Therefore,

‖fn(x)− fn(u)‖1 = ‖(fn−1(x), fn−1(x))− (fn−1(x), fn−1(y))‖1 = ‖fn−1(x)− fn−1(y)‖1 = 1.

It follows by Lemma 5.9 that fn is 1-Lipschitz for all n > 0.
We next show that for all n > 0 and for all x, y ∈ Dn,

‖fn(x)− fn(y)‖1 >
1
2dn(x, y). (∗)

Note that, by the above, for all n > m > 0, if xy ∈ Em, then

‖fn(x)− fn(y)‖1 = 2n−m ‖fm(x)− fm(y)‖1 = 2n−mdm(x, y) = dn(x, y).

We proceed to prove (∗) by induction on n. Note that f0, f1 are isometric, so (∗) holds for n = 0, 1.
Now let n > 2 and assume that (∗) holds for n− 1. Fix x, y ∈ Dn and recall that Dn consists of four
copies of Dn−1. Hence, we have three cases:

• Case 1: x, y are in the same copy, say x, y ∈ Dn−1(t`). Define g0 : D0(t`) → H2k by g0(u) =
f1(u), then define gm : Dm → Hk2m inductively, starting with g0 and proceeding in the same
way as fm was defined from f0. An easy induction shows that gn−1 = fn|Dn−1(t`) . By the
induction hypothesis,

‖fn(x)− fn(y)‖1 = ‖gn−1(x)− gn−1(y)‖1 >
1
2dDn−1(t`)(x, y) > 1

2dn(x, y).

• Case 2: x, y are in neighbouring copies, say x ∈ Dn−1(t`) and y ∈ Dn−1(tr). We then have

‖fn(x)− fn(y)‖1 > ‖fn(`)− fn(r)‖1 − ‖fn(`)− fn(x)‖1 − ‖fn(y)− fn(r)‖1

> 2n−1 ‖f1(`)− f1(r)‖1 − dn(x, `)− dn(y, r)
= 2n − dn(x, `)− dn(y, r)
=
(
2n−1 − dDn−1(t`) (x, `)

)
+
(
2n−1 − dDn−1(tr) (y, r)

)
= dn(x, t) + dn(t, y) = dn(x, y).

• Case 3: x, y are in opposite copies, say x ∈ Dn−1(t`) and y ∈ Dn−1(br). We then have

dn(x, y) = min
{
dn(x, `) + 2n−1 + dn(b, y), dn(x, t) + 2n−1 + dn(r, y)

}
6 2n

since dn(x, `) + dn(b, y) + dn(x, t) + dn(r, y) = 2n. Assume without loss of generality that
dn(x, t) + dn(y, b) 6 dn(x, `) + dn(y, r), from which it follows that dn(x, t) + dn(y, b) 6 2n−1.
Then

‖fn(x)− fn(y)‖1 > ‖fn(t)− fn(b)‖1 − ‖fn(t)− fn(x)‖1 − ‖fn(y)− fn(b)‖1

> 2n − dn(x, t)− dn(y, b) > 2n−1 >
1
2dn(x, y).

5.4 No dimension reduction in `1

Lemma 5.11 (Reverse Hölder inequality). Let 0 < r < 1 and s < 0 such that 1 = 1
s

+ 1
r
. Given real

numbers (ai)i∈I and (bi)i∈I with bi 6= 0, we have
(∑
i∈I
|ai|r

)1/r (∑
i∈I
|bi|s

)1/s

6
∑
i∈I
|aibi| .
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Proof. Apply Hölder’s inequality with p = 1
r
and q = 1

1−r = − s
r
:

(∑
i∈I
|ai|r

)1/r

=
(∑
i∈I
|aibi|r |bi|−r

)1/r

6

(∑
i∈I
|aibi|

)(∑
i∈I
|bi|s

)−1/s

.

Lemma 5.12 (Short Diagonal Lemma in Lp). Let 1 < p < 2. For all x1, . . . , x4 ∈ Lp, we have

‖x1 − x3‖2
p + (p− 1) ‖x2 − x4‖2

p 6 ‖x1 − x2‖2
p + ‖x2 − x3‖2

p + ‖x3 − x4‖2
p + ‖x4 − x1‖2

p .

Proof. We may assume without loss of generality that x1, . . . , x4 ∈ `kp for some k (for example, k = 6
will do by Theorem 2.24). We now claim that the following inequality holds for all x, y ∈ `kp:

‖x‖2
p + (p− 1) ‖y‖2

p 6
1
2
(
‖x+ y‖2

p + ‖x− y‖2
p

)
. (∗)

If this is true, then we apply the inequality (∗) to the pairs (x, y) = (x2 + x4 − 2x1, x4 − x2) and
(x, y) = (x2 + x4 − 2x3, x4 − x2) to get

‖x2 + x4 − 2x1‖2
p + (p− 1) ‖x2 − x4‖2

p 6 2 ‖x4 − x1‖2
p + 2 ‖x2 − x1‖2

p ,

‖x2 + x4 − 2x3‖2
p + (p− 1) ‖x2 − x4‖2

p 6 2 ‖x4 − x3‖2
p + 2 ‖x2 − x3‖2

p .

Taking the average of the two above inequalities and using the convexity of z 7→ ‖z‖2
p yields

‖x1 − x3‖2
p + (p− 1) ‖x2 − x4‖2

p =
∥∥∥∥x2 + x4 − 2x3

2 + 2x1 − x2 − x4

2

∥∥∥∥2

p
+ (p− 1) ‖x2 − x4‖2

p

6
1
2
(
‖x2 + x4 − 2x3‖2

p + ‖2x1 − x2 − x4‖2
p

)
+ (p− 1) ‖x2 − x4‖2

p

6 ‖x1 − x2‖2
p + ‖x2 − x3‖2

p + ‖x3 − x4‖2
p + ‖x4 − x1‖2

p .

Therefore, it suffices to prove (∗).
Note that, for a, b > 0, the function q ∈ [1,∞) 7→

(
aq+bq

2

)1/q
is increasing, so (∗) will follow from

‖x‖2
p + (p− 1) ‖y‖2

p 6

(‖x+ y‖pp + ‖x− y‖pp
2

)2/p

.

To prove this, define

L(t) = ‖x‖p + (p− 1) ‖y‖2
p t

2,

R(t) = H(t)2/p,

H(t) = 1
2
(
‖x+ ty‖pp + ‖x− ty‖pp

)
= 1

2

k∑
i=1

(|xi + tyi|p + |xi − tyi|p) .

From now on, we assume that x 6= 0 and y 6= 0. We want L(1) 6 R(1). Note that L(0) = R(0) =
‖x‖2

p. We differentiate:

L′(t) = 2(p− 1) ‖y‖2
p t,

R′(t) = 2
p
H(t)

2
p
−1H ′(t)

= 2
p
H(t)

2
p
−1p

2

k∑
i=1

(
|xi + tyi|p−1 sgn (xi + tyi) yi − |xi − tyi|p−1 sgn (xi − tyi) yi

)
.

Note that L′(0) = R′(0) = 0. We differentiate again:

L′′(t) = 2(p− 1) ‖y‖2
p ;
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for R′′, we let I = {i ∈ {1, . . . , k} , xi 6= 0 or yi 6= 0} 6= ∅ because x 6= 0 and y 6= 0. For i ∈ I, there
is at most one value of t such that xi + tyi = 0. Therefore, there is some subdivision 0 = t0 < t1 <
· · · < tm = 1 of [0, 1] such that xi + tyi 6= 0 for all i ∈ I and for all t ∈ ⋃mj=1 (tj−1, tj). For such t, we
have

R′′(t) = 2
p

(
2
p
− 1

)
H(t)

2
p
−2 (H ′(t))2 + 2

p
H(t)

2
p
−1H ′′(t)

>
2
p
H(t)

2
p
−1H ′′(t)

= 2
p
H(t)

2
p
−1p

2 (p− 1)
∑
i∈I

(
|xi + tyi|p−2 y2

i + |xi − tyi|p−2 y2
i

)
.

We now apply reverse Hölder (Lemma 5.11) with ai = y2
i , bi = |xi ± tyi|p−2, r = p

2 and s = 1
1−2/p =

p
p−2 to get

R′′(t) > H(t)
2
p
−1(p− 1)

(∑
i∈I
|yi|p

)2/p
(∑

i∈I
|xi + tyi|p

) p−2
p

+
(∑
i∈I
|xi − tyi|p

) p−2
p


> H(t)

2
p
−1(p− 1) ‖y‖2

p 2
‖x+ ty‖p−2

p + ‖x− ty‖p−2
p

2


> H(t)

2
p
−12(p− 1) ‖y‖2

p

(‖x+ ty‖pp + ‖x− ty‖pp
2

) p−2
2

= 2(p− 1) ‖y‖2
p

= L′′(t).

Hence, for each 1 6 j 6 m, (R− L)′′ > 0 on (tj−1, tj), so (R− L)′ is increasing on [0, 1]. But
(R− L)′ (0) = 0, so (R− L)′ > 0 on [0, 1] and (R− L) is increasing on [0, 1]. It follows that

R(1)− L(1) > R(0)− L(0) = 0.

Corollary 5.13. For 1 < p < 2 and n ∈ N,

cp (Dn) >
√

1 + (p− 1)n.

Proof. Note that Dn consists of copies xuyv of D1, where xy ∈ En−1 and u, v ∈ Vn\Vn−1. Now apply
Lemma 5.12 for a function f : Dn → Lp:

‖f(x)− f(u)‖2
p + ‖f(u)− f(y)‖2

p + ‖f(y)− f(v)‖2
p + ‖f(v)− f(x)‖2

p

> ‖f(x)− f(y)‖2
p + (p− 1) ‖f(u)− f(v)‖2

p .

Summing over all copies of D1 in Dn, we get∑
xy∈En

‖f(x)− f(y)‖2
p >

∑
xy∈En−1

‖f(x)− f(y)‖2
p + (p− 1)

∑
xy∈An

‖f(x)− f(y)‖2
p

> · · · > ‖f(`)− f(r)‖2
p + (p− 1)

∑
xy∈A1∪···∪An

‖f(x)− f(y)‖2
p .

This is a Poincaré inequality, so it gives a lower bound on the distortion by Proposition 4.8:

cp (Dn)2 >
dn(`, r)2 + (p− 1)∑n

k=1 4k−14n−k+1

|En|
= 1 + (p− 1)n.

Lemma 5.14. Given k > 2, the identity rp : `k1 → `kp (with p = 1 + 1
log2 k

) has distortion at most 2.
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Proof. For x ∈ Rk, we have ‖x‖p 6 ‖x‖1 = ∑k
i=1 (1 · |xi|) 6 k1− 1

p ‖x‖p, so the distortion is at most

k1− 1
p = k

1/ log2 k
1+1/ log2 k = k

1
log2 k+1 = 2

log2 k
log2 k+1 6 2.

Theorem 5.15. For all n ∈ N, there is a subset X of `1 of size |X| = N > n such that, if X ↪→D `k1,
then k > n

1
32D2 .

Proof. Let n ∈ N. By Lemma 5.10, there is an embedding f : Dn → `1 with distortion at most 2.
Set X = f (Dn), so |X| = |Dn| 6 4n. Assume that g : X → `k1 has distortion at most D. Then the
composite Dn

f−→ X
g−→ `k1

ip−→ `kp (with p = 1 + 1
log2 k

) has distortion at most 4D by Lemma 5.14. By
Corollary 5.13, 4D >

√
1 + (p− 1)n, or in other words,

16D2 >
n

log2 k
>

1
2 log2 |X|

log2 k
,

so log2 k >
log2|X|
32D2 and hence k > |X|

1
32D2 .

6 Ribe programme

6.1 Local properties of Banach spaces
Definition 6.1 (Banach-Mazur distance). Given two normed spaces X, Y , we define the Banach-
Mazur distance between them by

d(X, Y ) = inf
T :X→Y

linear isomorphism

‖T‖ ·
∥∥∥T−1

∥∥∥ ∈ [1,∞] .

Definition 6.2 (Finite representability). Let X and Y be Banach spaces.

(i) We say that X is finitely representable in Y if for all λ > 1 and for all finite-dimensional
subspaces E ⊆ X, there exists a subspace F ⊆ Y such that d(E,F ) < λ.

(ii) We say that X is crudely finitely representable in Y if there exists λ > 1 s.t. for all finite-
dimensional subspaces E ⊆ X, there exists a subspace F ⊆ Y such that d(E,F ) < λ.

Example 6.3. (i) Every X is finitely representable in c0.

(ii) `2 is finitely representable in every infinite-dimensional X by Dvoretzky’s Theorem (Theorem
3.2).

Definition 6.4 (Local property). A local property of a Banach space is one that depends only on
its finite-dimensional subspaces.

Example 6.5. Let X be a Banach space.

(i) For 1 6 p 6 2, we say that X has type p if there exists C > 0 s.t. for all n ∈ N, for all
x1, . . . , xn ∈ X,

E
(∥∥∥∥∥

n∑
i=1

εixi

∥∥∥∥∥
)
6 C

(
n∑
i=1
‖xi‖p

)1/p

,

where ε1, . . . , εn are {±1}-valued independent uniform random variables.

(ii) For 2 6 q 6 ∞, we say that X has cotype q if there exists C > 0 s.t. for all n ∈ N, for all
x1, . . . , xn ∈ X,

E
(∥∥∥∥∥

n∑
i=1

εixi

∥∥∥∥∥
)
>

1
C

(
n∑
i=1
‖xi‖q

)1/q

.
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Having type p or cotype q are local properties of Banach spaces.
For instance, every X has type 1 and cotype ∞; `2 has type 2 and cotype 2 with C = 1.

Remark 6.6. If X is crudely finitely representable in Y and Y has some local property, then so does
X.

Theorem 6.7 (Ribe). If Banach spaces X, Y are uniformly homeomorphic, then X is crudely finitely
representable in Y and Y is crudely finitely representable in X.

Remark 6.8. Theorem 6.7 implies that local properties of Banach spaces depend only on the metric
structure.

This idea leads to the Ribe programme:

(i) Find metric characterisations of local properties of Banach spaces.

(ii) Find metric analogues of local properties of Banach spaces.

We aim here to find a metric characterisation of super-reflexivity.

6.2 Weak-∗ topology for Banach spaces
Definition 6.9 (Reflexivity and super-reflexivity). Given a Banach space X, there is a (not neces-
sarily surjective) isometric isomorphism X → X∗∗ given by x 7→ x̂, where x̂(f) = f(x). The image
of X in X∗∗ is a closed subspace, which we identify with X. We say that X is reflexive if X = X∗∗.

We say that X is super-reflexive if every Y finitely representable in X is reflexive.
A super-reflexive Banach space is reflexive.

Remark 6.10. There exists a Banach space J such that J ∼= J∗∗ but J∗∗/J has dimension 1.

Example 6.11. Let X = (⊕n∈N `
n
1 )`2. Then X is reflexive; however, `1 is finitely representable in

X, and not reflexive, so X is not super-reflexive.

Definition 6.12 (Weak topology). The weak topology on a Banach space X is defined as follows:
U ⊆ X is w-open if for all x ∈ U , there exist n ∈ N, f1, . . . , fn ∈ X∗ and ε > 0 such that

{y ∈ X, ∀i ∈ {1, . . . , n} , |fi(y − x)| < ε} ⊆ U .

This is the weakest topology on X for which every f ∈ X∗ is continuous. In particular, it is contained
in the normed topology on X.

Proposition 6.13. Let C be a convex subset of a Banach space X. Then C is ‖·‖-closed iff C is
w-closed.

Proof. (⇐) The weak topology is contained in the normed topology.
(⇒) Assume that C is ‖·‖-closed. If x 6∈ C, then by the Hahn-Banach Theorem (Corollary 4.19),

there exists f ∈ X∗ such that supC f < f(x). Hence, {y ∈ X, f(y) > supC f} is a w-neighbourhood
of x disjoint from C.

Definition 6.14 (Weak-∗ topology). The weak-∗ topology on X∗ is defined as follows: U ⊆ X∗ is
w∗-open if for all f ∈ U , there exist n ∈ N, x1, . . . , xn ∈ X and ε > 0 such that

{g ∈ X∗, ∀i ∈ {1, . . . , n} |(g − f) (xi)| < ε} ⊆ U .

This is the weakest topology on X∗ for which every x ∈ X ⊆ X∗∗ is continuous. In particular, it is
contained in the weak topology on X∗.

Theorem 6.15 (Banach-Alaoglu). Let X be a Banach space. Then BX∗ = {f ∈ X∗, ‖f‖ 6 1} is
w∗-compact.
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Proof. Let K = ∏
x∈X [−‖x‖ ,+ ‖x‖] with the product topology. Note that K is compact by Ty-

chonoff’s Theorem. Now consider

ϕ : f ∈ BX∗ 7−→ (f(x))x∈X ∈ K.

If BX∗ is equipped with the weak-∗ topology, then ϕ is a homeomorphism onto its image. Moreover,

ϕ (BX∗) =
⋂

x,y∈X
a,b∈R

{
(λx)x∈X , λax+by − aλx − bλy = 0

}
,

so ϕ (BX∗) is closed, hence compact.

Lemma 6.16 (Local reflexivity). Let X be a Banach space. Let E ⊆ X∗ be finite-dimensional, let
ϕ ∈ X∗∗ and M > ‖ϕ‖. Then there exists x ∈ X such that ‖x‖ < M and x̂|E = ϕ|E .

Proof. Fix a basis f1, . . . , fn of E, and define T : X → Rn by

Tx = (fi(x))16i6n .

Let C = {Tx, ‖x‖ < M}; we need (ϕ (fi))16i6n ∈ C.
Note that T is a bounded linear map and C is convex. We show that T is onto: if not, then

there exists a ∈ (ImT )⊥ \{0}, i.e. such that ∑n
i=1 aifi(x) = 0 for all x ∈ X; hence ∑n

i=1 aifi = 0,
a contradiction. Therefore, T is onto. By the Open Mapping Theorem, C is open. Assume for
contradiction that (ϕ (fi))16i6n 6∈ C. Then by Hahn-Banach, there exists a ∈ Rn\{0} such that

n∑
i=1

aifi(x) <
n∑
i=1

aiϕ (fi)

for all x ∈ X with ‖x‖ < M . It follows that∥∥∥∥∥
n∑
i=1

aifi

∥∥∥∥∥ ·M 6 ϕ

(
n∑
i=1

aifi

)
6 ‖ϕ‖ ·

∥∥∥∥∥
n∑
i=1

aifi

∥∥∥∥∥ .
Since ∑n

i=1 aifi 6= 0, we get M 6 ‖ϕ‖, a contradiction.

Theorem 6.17 (Goldstine). Let X be a Banach space. Then, in X∗∗,

B
w∗
X = BX∗∗ .

Proof. (⊆) Since BX ⊆ BX∗∗ and BX∗∗ is w∗-closed by Banach-Alaoglu (Theorem 6.15), it follows
that Bw∗

X ⊆ BX∗∗ .
(⊇) Fix ψ ∈ BX∗∗ and let U be a w∗-neighbourhood of ψ. Then there are n ∈ N, f1, . . . , fn ∈ X∗

and ε > 0 such that

{χ ∈ X∗∗, ∀i ∈ {1, . . . , n} , |(χ− ψ) (fi)| < ε} ⊆ U .

Fix δ > 0 to be chosen later. By Lemma 6.16, there exists x ∈ X such that ‖x‖ < 1 + δ and
fi(x) = ψ (fi) for all i. If ‖x‖ 6 1, then x ∈ BX ∩ U , so we are done. Otherwise, ‖x‖ > 1 and∣∣∣∣∣ x̂‖x‖ (fi)− ψ (fi)

∣∣∣∣∣ =
∣∣∣∣∣fi(x)
‖x‖

− fi(x)
∣∣∣∣∣ = |fi(x)|

‖x‖
|1− ‖x‖| 6 δ ‖fi‖

for all i. We can choose δ such that δ ‖fi‖ < ε for all i; hence x
‖x‖ ∈ BX ∩ U .

Corollary 6.18. A Banach space X is reflexive if and only if BX is w-compact.

Proof. (⇒) If X is reflexive, then X = X∗∗, so (X,w) = (X∗∗, w∗), so (BX , w) = (BX∗∗ , w∗), which
is compact by Banach-Alaoglu (Theorem 6.15).

(⇐) The restriction to X of the weak-∗ topology on X∗∗ is the weak topology. So BX is weak-∗
compact in X∗∗ by assumption, and in particular BX is weak-∗ closed. Hence (by Theorem 6.17)
BX∗∗ = B

w∗
X = BX and hence X∗∗ = X.
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6.3 Characterisation of reflexivity in terms of convex hulls
Theorem 6.19. Given a Banach space X, the following assertions are equivalent:

(i) X is non-reflexive.

(ii) ∀θ ∈ (0, 1), ∃ (xi)i>1 ∈ BX , ∃ (fi)i>1 ∈ BX∗ , ∀i, j > 1, fi (xj) =
θ if i 6 j

0 if i > j
.

(iii) ∃θ ∈ (0, 1), ∃ (xi)i>1 ∈ BX , ∃ (fi)i>1 ∈ BX∗ , ∀i, j > 1, fi (xj) =
θ if i 6 j

0 if i > j
.

(iv) ∀θ ∈ (0, 1), ∃ (xi)i>1 ∈ BX , ∀n ∈ N, d (Conv {x1, . . . , xn} ,Conv {xn+1, xn+2, . . . }) > θ.

(v) ∃θ ∈ (0, 1), ∃ (xi)i>1 ∈ BX , ∀n ∈ N, d (Conv {x1, . . . , xn} ,Conv {xn+1, xn+2, . . . }) > θ.

Proof. (i)⇒ (ii) Since X is non-reflexive, it is a proper closed subspace of X∗∗, so by Hahn-Banach
there exists T ∈ X∗∗∗ such that ‖T‖ = 1 and T|X = 0. Fix θ ∈ (0, 1) and choose ϕ ∈ X∗∗ such that
‖ϕ‖ < 1 and λ = Tϕ > θ. Then

θ < λ = Tϕ 6 ‖T‖ · ‖ϕ‖ = ‖ϕ‖ < 1,

i.e. θ < λ < 1. Moreover, since ‖ϕ‖ > θ, there exists f1 ∈ BX∗ s.t. ϕ (f1) = θ. Then

θ = ϕ (f1) 6 ‖ϕ‖ · ‖f1‖ < ‖f1‖ ,

and hence there is x1 ∈ BX such that f1 (x1) = θ.
Assume now that for some n > 1, we have found (xi)16i6n ∈ BX and (fi)16i6n ∈ BX∗ such that

fi (xj) =
θ if 1 6 i 6 j 6 n

0 if 1 6 j < i 6 n
,

and ϕ (fi) = θ for 1 6 i 6 n. Since Txi = 0 for 1 6 i 6 n and Tϕ = λ and ‖T‖ = 1 < λ
θ
, Lemma

6.16 implies the existence of g ∈ X∗ s.t ‖g‖ < λ
θ
and g (xi) = 0 for 1 6 i 6 n and ϕ(g) = λ. Set

fn+1 = θ
λ
g ∈ BX∗ , so that fn+1 (xi) = 0 for 1 6 i 6 n and ϕ (fn+1) = θ. Since ϕ (fi) = θ for

1 6 i 6 n+ 1 and ‖ϕ‖ < 1, Lemma 6.16 implies the existence of xn+1 ∈ BX such that fi (xn+1) = θ
for 1 6 i 6 n+ 1. Now the construction continues inductively.

(ii)⇒ (iii) and (iv)⇒ (v) Obvious.
(ii) ⇒ (iv) and (iii) ⇒ (v) Fix θ ∈ (0, 1). Assume that there are (xi)16i6n ∈ BX and (fi)16i6n ∈

BX∗ such that (ii) (or (iii)) holds. Given n ∈ N and finite convex combinations ∑n
i=1 tixi and∑∞

i=n+1 tixi, we have∥∥∥∥∥∥
∞∑

i=n+1
tixi −

n∑
i=1

tixi

∥∥∥∥∥∥ >
∣∣∣∣∣∣fn+1

 ∞∑
i=n+1

tixi −
n∑
i=1

tixi

∣∣∣∣∣∣ =
∞∑

i=n+1
θti = θ,

which proves that d (Conv {x1, . . . , xn} ,Conv {xn+1, xn+2, . . . }) > θ.
(v) ⇒ (i) Assume that there is θ ∈ (0, 1) and (xi)i>1 ∈ BX such that (v) holds. Assume for

contradiction that X is reflexive. For n ∈ N, let

Cn = Conv {xn+1, xn+2, . . . } .

Then the ‖·‖-closure Cn is a ‖·‖-closed, hence w-closed subset of BX . Moreover, C1 ⊇ C2 ⊇ · · · ,
and Cn 6= ∅ for all n. Since BX is w-compact by Corollary 6.18, we have⋂

n>0
Cn 6= ∅.

50



Pick x ∈ ⋂n>0Cn. Since x ∈ C1, there is y ∈ C1 such that ‖x− y‖ < θ
3 . Choose n > 1 such that

y ∈ Conv {x1, . . . , xn}. Since x ∈ Cn, there is z ∈ Cn such that ‖x− z‖ < θ
3 . Then

d (Conv {x1, . . . , xn} ,Conv {xn+1, xn+2, . . . }) 6 ‖y − z‖ <
2
3θ,

a contradiction.

6.4 Ultrafilters
Definition 6.20 (Filter). Fix a set I 6= ∅. A filter on I is a family F ⊆ P(I) such that

(i) I ∈ F and ∅ 6∈ F .

(ii) If A ⊆ B ⊆ I with A ∈ F , then B ∈ F .

(iii) If A,B ∈ F , then A ∩B ∈ F .

Example 6.21. Let I 6= ∅.

(i) For i ∈ I, Ui = {A ⊆ I, i ∈ A} is a filter – the principal filter at i.

(ii) If I is infinite, then {A ⊆ I, I\A is finite} is a filter – the cofinite filter.

Definition 6.22 (Convergence along a filter). Let X be a topological space, f : I → X be a function
and F be a filter on I. For x ∈ X, we write x = limF f if for all neighbourhoods U of x in X, the
set {i ∈ I, f(i) ∈ U} is in F .

Note that if X is Hausdorff, x = limF f and y = limF f , then x = y.

Example 6.23. (i) If I = N and F is the cofinite filter on N, then convergence along F is the
usual notion of convergence of sequences.

(ii) If F = Ui for some i ∈ I, then f(i) = limF f holds for all f : I → X.

Definition 6.24 (Ultrafilter). Let I be a nonempty set. An ultrafilter on I is a maximal filter on
I: it is a filter U such that, if F is a filter and U ⊆ F , then U = F .

Example 6.25. Any principal filter Ui = {A ⊆ I, i ∈ A} is an ultrafilter. If I is finite, these are
the only ultrafilters. Otherwise, a free ultrafilter is an ultrafilter that is not principal. For instance,
any ultrafilter containing the cofinite filter is free.

Proposition 6.26. Any filter is contained in an ultrafilter.

Proof. Use Zorn’s Lemma.

Lemma 6.27. Let U be an ultrafilter. If A ∪B ∈ U , then A ∈ U or B ∈ U .

Proof. Assume that there exist C,D ∈ U such that A∩C = B∩D = ∅. Then (A ∪B)∩(C ∩D) = ∅,
which is impossible because A ∪B,C ∩D ∈ U . We may therefore assume without loss of generality
that A ∩ C 6= ∅ for all C ∈ U . Therefore F = {D ⊆ I, ∃C ∈ U , D ⊇ A ∩ C} is a filter on I, and
F ⊇ U so F = U . In particular, A ∈ F = U .

Remark 6.28. (i) Every free ultrafilter contains the cofinite filter.

(ii) For an ultrafilter U , define

µ : A ∈ P(I) 7−→
0 if A 6∈ U

1 if A ∈ U
.

Then µ is a finitely-additive measure.
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Lemma 6.29. Let U be an ultrafilter on a set I and let K be a compact topological space. Then for
every f : I → K, there exists x ∈ K such that

x = lim
U
f.

In particular, for every bounded function f : I → R, there is a unique x ∈ R such that x = limU f .

Proof. If this were not the case, then for every x ∈ K, there would be an open neighbourhood Vx
of x s.t. Ax = {i ∈ I, f(i) ∈ Vx} 6∈ U . Since K is compact, there is a finite F ⊆ X such that⋃
x∈F Vx = K. Then ⋃x∈F Ax = I ∈ U , and by Lemma 6.27, there exists x ∈ F such that Ax ∈ U .

This is a contradiction.

Remark 6.30. Given bounded functions f, g : I → R and an ultrafilter U on I, we have

lim
U

(f + g) = lim
U
f + lim

U
g and lim

U
(fg) =

(
lim
U
f
)(

lim
U
g
)
.

Moreover, if f(i) 6 g(i) for all i ∈ I, then limU f 6 limU g.

6.5 Ultraproducts and ultrapowers
Definition 6.31 (Ultraproducts). Fix a set I 6= ∅ and an ultrafilter U on I. Given Banach spaces
(Xi)i∈I , we set (⊕

i∈I
Xi

)
∞

=
{
x ∈

∏
i∈I
Xi, sup

i∈I
‖xi‖ <∞

}
.

This is a Banach space with norm ‖x‖ = supi∈I ‖xi‖. We define

‖x‖U = lim
U
‖xi‖ .

This defines a seminorm on (⊕i∈I Xi)∞. It follows that

NU =
x ∈

(⊕
i∈I

Xi

)
∞

, ‖x‖U = 0


is a closed subspace of (⊕i∈I Xi)∞. The quotient is denoted by(∏
i∈I
Xi

)
U

=
(⊕
i∈I

Xi

)
∞

/NU .

It is a normed space with ‖xU‖U = ‖x‖U , where for x ∈ (⊕i∈I Xi)∞, xU = x + NU ∈ (∏i∈I Xi)U .
Moreover, this norm is complete, so (∏i∈I Xi)U is a Banach space – called the ultraproduct of the
(Xi)i∈I .

If Xi = X for all i ∈ I, where X is some Banach space, then (∏i∈I Xi)U is denoted by XU –
called an ultrapower of X.

Proposition 6.32. Any ultrapower XU of a Banach space X is finitely representable in X.

Proof. Let E be a finite-dimensional subspace of XU . Choose a basis e1, . . . , en of E. For each
1 6 k 6 n, fix (xk,i)i∈I a bounded sequence in X such that ek =

(
(xk,i)i∈I

)
U
. Hence, for all

(λk)16k6n ∈ Rn,
n∑
k=1

λkek =
( n∑

k=1
λkxk,i

)
i∈I


U

.
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Fix ε > 0. We seek an injective linear map T : E → X such that ‖T‖ ‖T−1‖ < 1 + ε. Choose
δ ∈

(
0, 1

3

)
such that 1+δ

1−3δ < 1 + ε. Let S ⊆ Rn be a finite set such that

S̃ =
{

n∑
k=1

λkek, (λk)16k6n ∈ S
}

is a δ-net for SE = {x ∈ E, ‖x‖ = 1}. For all (λk)16k6n in S, we have

lim
U

∥∥∥∥∥
n∑
k=1

λkxk,i

∥∥∥∥∥ =
∥∥∥∥∥
n∑
k=1

λkek

∥∥∥∥∥
U

= 1;

it follows that {
i ∈ I, 1− δ <

∥∥∥∥∥
n∑
k=1

λkxk,i

∥∥∥∥∥ < 1 + δ

}
∈ U .

Since S is finite, the intersection of these sets (for (λk)16k6n ∈ S) is in U ; in particular, their
intersection is nonempty, so there exists i0 ∈ I such that, for all (λk)16k6n ∈ S,

1− δ <
∥∥∥∥∥
n∑
k=1

λkxk,i0

∥∥∥∥∥ < 1 + δ.

Now define
T :

(
n∑
k=1

µkek

)
∈ E 7−→

(
n∑
k=1

µkxk,i0

)
∈ X.

Given x ∈ SE, there exists z ∈ S̃ such that ‖x− z‖ 6 δ. Hence

‖Tx‖ 6 ‖Tz‖+ ‖T (x− z)‖ 6 1 + δ + ‖T‖ · δ.

Taking the supremum over x ∈ SE yields ‖T‖ 6 1 + δ + δ ‖T‖, i.e. ‖T‖ 6 1+δ
1−δ . It follows that

‖Tx‖ > ‖Tz‖ − ‖T (x− z)‖ > 1− δ − 1 + δ

1− δ δ = 1− 3δ
1− δ .

Therefore ‖T−1‖ 6 1−δ
1−3δ , and ‖T‖ ‖T

−1‖ 6 1+δ
1−3δ < 1 + ε.

6.6 Isomorphic characterisation of super-reflexivity
Theorem 6.33. Let X be a Banach space. Then the following assertions are equivalent:

(i) X is super-reflexive.

(ii) Every Y crudely finitely representable in X is reflexive.

Proof. (ii)⇒ (i) OK because every Y finitely representable in X is crudely finitely representable and
hence reflexive.

(i) ⇒ (ii) Assume Y is non-reflexive and crudely finitely representable in X. Fix θ ∈ (0, 1). By
Theorem 6.19, there is a sequence (yi)i>1 in BY such that for all n,

d (Conv {y1, . . . , yn} , {yn+1, yn+2, . . . }) > θ.

There exists λ > 1 such that for any finite-dimensional subspace E ⊆ Y , there is a linear map
T : E → X such that

1
λ
‖y‖ 6 ‖Ty‖ 6 ‖y‖
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for all y ∈ E. In particular, for N ∈ N, there is a linear map TN : Span (y1, . . . , yN)→ X such that
1
λ
‖y‖ 6 ‖TNy‖ 6 ‖y‖ for all y ∈ Span (y1, . . . , yN). Set

xN,i = TN (yi) ∈ BX

for 1 6 i 6 N . Note that for 1 6 m < n 6 N and for convex combinations ∑m
i=1 tixN,i and∑n

i=m+1 tixN,i, we have∥∥∥∥∥∥
m∑
i=1

tixN,i −
n∑

i=m+1
tixN,i

∥∥∥∥∥∥ > 1
λ

∥∥∥∥∥∥
m∑
i=1

tiyi −
n∑

i=m+1
tiyi

∥∥∥∥∥∥ > θ

λ
.

Now fix a free ultrafilter U on N and define

x̃N,i =
xN,i if i 6 N

0 otherwise
,

and set x̃i =
(
(x̃N,i)N>1

)
U
. Given 1 6 m < n and convex combinations z = ∑m

i=1 tix̃i and w =∑n
i=m+1 tix̃i in XU , we have ∥∥∥∥∥∥

m∑
i=1

tix̃N,i −
n∑

i=m+1
tix̃N,i

∥∥∥∥∥∥ > θ

λ

for all N > n; it follows that ‖z − w‖ > θ
λ
. Thus,

d (Conv {x̃1, . . . , x̃m} ,Conv {x̃m+1, x̃m+2, . . . }) >
θ

λ
.

By Theorem 6.19, XU is non-reflexive. But it is finitely representable in X by Proposition 6.32;
hence X is not super-reflexive.

6.7 Uniform convexity
Definition 6.34 (Strict convexity and uniform convexity). Let X be a Banach space.

(i) X is strictly convex if for all x, y ∈ SX with x 6= y,
∥∥∥x+y

2

∥∥∥ < 1.

(ii) X is uniformly convex if for all ε ∈ (0, 2], there exists δ > 0 such that for all x, y ∈ SX with
‖x− y‖ > ε, we have ∥∥∥∥x+ y

2

∥∥∥∥ 6 1− δ.

The module of uniform convexity of X is the function δX : [0, 2]→ R+ defined by

δX(ε) = inf
x,y∈SX
‖x−y‖>ε

(
1−

∥∥∥∥x+ y

2

∥∥∥∥) .
Example 6.35. (i) `2 is uniformly convex.

(ii) c0, `1, `∞ are not strictly convex.

(iii) Let 1 < pn < 2 such that pn −−−→
n→∞

1 and set X =
(⊕

n>1 `
2
pn

)
`2
. Then X is strictly convex but

not uniformly convex. However, X is isomorphic to (⊕n>1 `
2
2)
`2
∼= `2, so uniform convexity is

not an isomorphic property.

Proof. (i) Given x, y ∈ S`2 with ‖x− y‖ > ε, we have 4 = 2 ‖x‖2 + 2 ‖y‖2 = ‖x+ y‖2 + ‖x− y‖2 >
‖x+ y‖2 + ε2, so ∥∥∥∥x+ y

2

∥∥∥∥ 6
√

1− ε2

4 ∼ 1− ε2

8 .
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Remark 6.36. Let X be a Banach space. Recall from Theorem 6.17 that Bw∗
X = BX∗∗. In fact, if

dimX =∞, then Sw∗X = BX∗∗.

Proof. Let ϕ ∈ BX∗∗ and let U be a w∗-neighbourhood of ϕ. Without loss of generality, there exist
f1, . . . , fn ∈ X∗ and ε > 0 such that

U = {ψ ∈ X∗∗, ∀i ∈ {1, . . . , n} , |(ψ − ϕ) (fi)| < εi} .

Choose x ∈ BX ∩ U . Since dimX = ∞, take z ∈ ⋂ni=1 Ker fi\{0}. Then x + λz ∈ U for all λ ∈ R,
and there exists λ ∈ R such that ‖x+ λz‖ = 1.

Theorem 6.37 (Milman-Pettis). If a Banach space X is uniformly convex, then X is reflexive.

Proof. We assume without loss of generality that dimX = ∞. It suffices to show that SX∗∗ ⊆ X.
Let ϕ ∈ SX∗∗ , ε ∈ (0, 2) and δ = δX(ε) > 0. Hence, for all x, y ∈ SX with ‖x+ y‖ > 2− δ,

1−
∥∥∥∥x+ y

2

∥∥∥∥ 6 δ

2 < δ,

and hence ‖x− y‖ < ε. Choose fε ∈ BX∗ such that ϕ (fε) > 1− δ
2 and let

Vε =
{
ψ ∈ X∗∗, ψ (fε) > 1− δ

2

}
;

this is a w∗-closed neighbourhood of ϕ. Hence, Wε = Vε ∩ SX is a nonempty (by Remark 6.36) and
‖·‖-closed neighbourhood of ϕ. Also, given x, y ∈ Wε, we have

‖x+ y‖ > fε (x+ y) > 2− δ,

and hence ‖x− y‖ < ε. Thus diamWε 6 ε.
Now, for n > 1, let

An =
n⋂
k=1

W1/k =
{
x ∈ SX , ∀k ∈ {1, . . . , n} , f1/k(x) > 1− 1

2δX
(1
k

)}
.

Hence, An is a nonempty and ‖·‖-closed subset of X with diamAn 6 1
n
. Moreover, An ⊇ An+1 for

all n. By completeness of X, there exists x ∈ SX such that ⋂n>1An = {x}.
We now show that ϕ = x̂. If not, then there exists g ∈ X∗ such that η = ϕ(g) − g(x) > 0.

Consider
Bn = An ∩

{
ψ ∈ X∗∗, |ϕ(g)− ψ(g)| 6 η

2

}
.

The set Bn is nonempty, ‖·‖-closed, and diamBn 6 diamAn −−−→
n→∞

0. Hence, ⋂n>1Bn = {x} and
|ϕ(g)− g(x)| 6 η

2 , a contradiction.

Theorem 6.38 (Enflo). If (X, ‖·‖) is a super-reflexive Banach space, then there is an equivalent
norm |||·||| on X such that (X, |||·|||) is uniformly convex.

Recall that the norms ‖·‖ and |||·||| are equivalent if idX : (X, ‖·‖)→ (X, |||·|||) is an isomorphism.

Example 6.39. The space `2 ⊕2 `
2
1 is not strictly convex, but it is isomorphic to `2 ⊕2 `

2
2
∼= `2, so it

is super-reflexive.
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6.8 Finite tree property
Definition 6.40 (Binary tree). The binary tree Bn of depth n is the graph with vertex set ⋃nk=0{0, 1}k
and where ε = (ε1, . . . , εk) ∈ {0, 1}k is joined to (ε1, . . . , εk, i) for i ∈ {0, 1}.

Given ε = (ε1, . . . , εk) ∈ {0, 1}k and δ = (δ1, . . . , δ`) ∈ {0, 1}`, we write ε 4 δ if k 6 ` and εi = δi
for 1 6 i 6 k. We also let |ε| = k denote the length of ε.

Definition 6.41 (Finite tree property). A Banach space X has the finite tree property if there exists
θ > 0 such that for all n > 1, there exist (xε)ε∈Bn in BX such that

xε = 1
2 (xε0 + xε1) and ‖xε − xε,i‖ > θ

for all ε ∈ Bn and i ∈ {0, 1}.

Definition 6.42 (Strongly exposed point). Given a convex set C in a Banach space Z, a point
w ∈ C is strongly exposed if there exists f ∈ Z∗ such that

(i) For all u ∈ C\{w}, f(u) < f(w).

(ii) diam {u ∈ C, f(w)− ε < f(u)} −−→
ε→0

0.

Theorem 6.43. Every nonempty w-compact convex subset of a separable Banach space has a strongly
exposed point.

Theorem 6.44. For a Banach space X, the following assertions are equivalent:

(i) X is not super-reflexive.

(ii) X has the finite tree property.

(iii) There exists θ > 0 such that for all n ∈ N, there exist (xi)16i6n in BX such that∥∥∥∥∥
n∑
i=1

aixi

∥∥∥∥∥ > θ

∣∣∣∣∣
m∑
i=`

ai

∣∣∣∣∣
for all (ai)16i6n in R and 1 6 ` 6 m 6 n.

Proof. (i) ⇒ (ii) Assume that there is a non-reflexive space Z which is finitely representable in X.
Fix θ ∈ (0, 1). By Theorem 6.19, there is a sequence (zn)n>1 in BZ such that, for all n,

d (Conv {z1, . . . , zn} ,Conv {zn+1, zn+2, . . . }) > θ.

For ε = (ε1, . . . , εn) ∈ Bn, let k(ε) = 1 +∑n
i=1 2n−iεi; for δ ∈ Bn, let

Iδ = {k(ε), ε < δ, |ε| = n} .

Set zδ = 2|δ|−n∑k∈Iδ zk. Since |Iδ| = 2n−|δ|, we have zk ∈ Conv {zk, k ∈ Iδ} ⊆ BZ . Moreover, for
δ ∈ Bn−1, we have Iδ = Iδ,0 q Iδ,1 and moreover k < ` for all k ∈ Iδ,0 and ` ∈ Iδ,1. It follows that

zδ = 1
2 (zδ,0 + zδ,1) ,

and for i ∈ {0, 1},

‖zδ − zδ,i‖ = 1
2 ‖zδ,0 − zδ,1‖ >

1
2d (Conv {zk, k ∈ Iδ,0} ,Conv {zk, k ∈ Iδ,1}) >

θ

2 .

Hence Z has the finite tree property, and so does X since Z is finitely representable in X.
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(ii)⇒ (i) Assume that there exists θ > 0 such that for all n > 1, there exists
{
x(n)
ε , ε ∈ Bn

}
⊆ BX

with x(n)
ε = 1

2

(
x

(n)
ε,0 + x

(n)
ε,1

)
for all ε ∈ Bn−1, and

∥∥∥x(n)
ε − x

(n)
ε,i

∥∥∥ > θ for i ∈ {0, 1}. Let U be a free
ultrafilter on N, and let B∞ = ⋃

k>0Bk be the infinite binary tree. Set

x̃(n)
ε =

x(n)
ε if |ε| 6 n

0 otherwise
,

and x̃ε =
((
x̃(n)
ε

)
n>1

)
U
∈ XU . It is easy to see that x̃ε = 1

2 (x̃ε,0 + x̃ε,1) and ‖x̃ε − x̃ε,i‖ > θ for all
ε ∈ B∞ and i ∈ {0, 1}. Let

Z = Span {x̃ε, ε ∈ B∞} ⊆ XU .

This is a separable subspace of XU . Assume for contradiction that X is super-reflexive. Then Z is
reflexive by Proposition 6.32. It follows by Corollary 6.18 that BZ is w-compact. Let

C = Conv {xε, ε ∈ B∞} ⊆ BZ .

Then C is a ‖·‖-closed convex subset of BZ , and hence C is w-compact. By Theorem 6.43, C has
a strongly exposed point w, so there exists f ∈ Z∗ such that f(u) < f(w) for all u ∈ C\{w}, and
there exists η > 0 such that

diam {u ∈ C, f(w)− η < f(u)} < θ

2 .

Since {u ∈ C, f(u) 6 f(w)− η} ( C is ‖·‖-closed and convex, it cannot contain {x̃ε, ε ∈ B∞}, so
there exists ε ∈ B∞ such that f (x̃∞) > f(w)− η. Therefore 1

2 (f (x̃ε,0) + f (x̃ε,1)) = f (x̃ε), so there
exists i ∈ {0, 1} such that f (x̃ε,i) > f(w)− η. Thus ‖x̃ε − x̃ε,i‖ < θ

2 , a contradiction.
(i) ⇒ (iii) Assume that there exists Z non-reflexive, finitely representable in X. By Theorem

6.19, there exist θ ∈ (0, 1), (zi)i>1 ∈ BZ and (hi)i>1 ∈ BZ∗ such that

hi (zj) =
θ if i 6 j

0 if i > j
.

Given scalars (ai)16i6n ∈ R, ∣∣∣∣∣
n∑
i=`

ai

∣∣∣∣∣ = 1
θ

∣∣∣∣∣h`
(

n∑
i=1

aizi

)∣∣∣∣∣ 6 1
θ

∥∥∥∥∥
n∑
i=1

aizi

∥∥∥∥∥ .
If 1 6 ` 6 m 6 n, then ∣∣∣∣∣

m∑
i=`

ai

∣∣∣∣∣ 6
∣∣∣∣∣
n∑
i=`

ai

∣∣∣∣∣+
∣∣∣∣∣∣

n∑
i=m+1

ai

∣∣∣∣∣∣ 6 2
θ

∥∥∥∥∥
n∑
i=1

aizi

∥∥∥∥∥ .
Since Z is finitely representable in X, for all λ > 2

θ
and for all n > 1, there exist x1, . . . , xn ∈ BX

such that ∣∣∣∣∣
m∑
i=`

ai

∣∣∣∣∣ 6 λ

∥∥∥∥∥
n∑
i=1

aixi

∥∥∥∥∥
for all (ai)16i6n ∈ R and 1 6 ` 6 m 6 n.

(iii)⇒ (i) Assume that there exists θ > 0 such that for all n > 1, there exist x(n)
1 , . . . , x(n)

n ∈ BX

such that ∥∥∥∥∥
n∑
i=1

aix
(n)
i

∥∥∥∥∥ > θ

∣∣∣∣∣
m∑
i=`

ai

∣∣∣∣∣
for all (ai)16i6n ∈ R and 1 6 ` 6 m 6 n. Given a free ultrafilter U on N, the usual process yields an
infinite sequence (x̃i)i>1 ∈ BXU such that for all n ∈ N, (ai)16i6n ∈ R and 1 6 ` 6 m 6 n,∥∥∥∥∥

n∑
i=1

aix̃i

∥∥∥∥∥ > θ

∣∣∣∣∣
m∑
i=`

ai

∣∣∣∣∣ .
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It follows that for every i ∈ N, we can extend

hi (x̃j) =
θ if i 6 j

0 if i > j

to a well-defined linear functional on XU with ‖hi‖ 6 1 (by Hahn-Banach). Now by Theorem
6.19, XU is not reflexive. But by Proposition 6.32, XU is finitely representable in X, so X is not
super-reflexive.

Remark 6.45. Let S be the set of sequence (ai)i>1 in R such that ∑∞i=1 ai is convergent. This becomes
a normed space with

‖a‖ = sup
16`6m

∣∣∣∣∣
m∑
i=`

ai

∣∣∣∣∣ .
This is called the summing norm. Note that S is isomorphic to c0 via the map a 7→ (∑∞i=n ai)n>1.

6.9 Metric characterisation of super-reflexivity
Theorem 6.46. Let X be a Banach space. Then the following assertions are equivalent:

(i) X is not super-reflexive.

(ii) The sequence (Dn)n>1 of diamond graphs embeds uniformly bilipschitzly into X.

Sketch of proof. (ii)⇒ (i) Assume that there are fn : Dn → X with supn>1 dist (fn) <∞. Without
loss of generality, there exists δ > 0 such that, for all n and for all x, y ∈ Dn,

δ2−ndn(x, y) 6 ‖fn(x)− fn(y)‖ 6 2−ndn(x, y).

Fix n and write f = fn. Let x∅ = f(t)− f(b) ∈ BX . Note that

‖[(f(t)− f(`))− (f(`)− f(b))]− [(f(t)− f(r))− (f(r)− f(b))]‖
= ‖2 (f(r)− f(`))‖ > 2δ2−ndn(`, r) = 2δ.

Without loss of generality, ‖(f(t)− f(`))− (f(`)− f(b))‖ > δ. Let x0 = 2 (f(`)− f(b)) and x1 =
2 (f(t)− f(`)). Then x∅ = 1

2 (x0 + x1), and ‖x∅ − x0‖ = 1
2 ‖x1 − x0‖ > δ. Then continue inductively.

(i) ⇒ (ii) Assume that there exist θ > 0 satisfying Theorem 6.44.(iii). Then define fn : Dn →
{0, 1}2n ⊆ `2n

1 as follows: f0(t) = 1, f0(b) = 0, then if xy ∈ En−1, we assume that fn−1(x), fn−1(y) ∈
{0, 1}2n−1 differ in one component, say the j-th one. Consider D1(xy) = {x, y, u, v}, and set
(fn(u))2i−1 = (fn(v))2i = (fn−1(x))i, etc.

References
[1] J. Matoušek. Lecture notes on metric embeddings.

[2] M.I. Ostrovskii. Metric Embeddings.

58


	Definitions, examples and motivation
	Metric spaces
	Isometric, Lipschitz and bilipschitz embeddings
	Examples of embeddings
	The sparsest cut problem
	Coarse and uniform embeddings

	Fréchet embeddings, Aharoni's Theorem
	Isometric embeddings into l infty
	Background on Ramsey theory and graphs
	Lower bound on m infty (n)
	Nonlinear Hahn-Banach Theorem
	More background on Ramsey theory and graphs
	Gap between n and m infty (n)
	Upper bound on m p (n)
	Aharoni's Theorem

	Bourgain's Embedding Theorem
	Dvoretzky's Theorem
	Padded decompositions and existence of scaled embeddings
	Existence of padded decompositions
	Glueing Lemma and Bourgain's Embedding Theorem

	Lower bounds on distortion and Poincaré inequalities
	John's Lemma
	Poincaré inequalities
	Hahn-Banach Theorem
	Hahn-Banach Separation Theorem
	Optimality of Poincaré inequalities
	Discrete Fourier analysis on the Hamming cube
	Poincaré inequality for L2-valued functions on Hn
	Linear codes
	Poincaré inequality for L1-valued functions on F2n/Cp
	Optimality of Bourgain's Embedding Theorem

	Dimension reduction
	Preliminary results on Gaussian random variables
	Johnson-Lindenstrauss Lemma
	Diamond graphs
	No dimension reduction in l1

	Ribe programme
	Local properties of Banach spaces
	Weak-star topology for Banach spaces
	Characterisation of reflexivity in terms of convex hulls
	Ultrafilters
	Ultraproducts and ultrapowers
	Isomorphic characterisation of super-reflexivity
	Uniform convexity
	Finite tree property
	Metric characterisation of super-reflexivity

	References

