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1 Definitions, examples and motivation

1.1 Metric spaces

Definition 1.1 (Metric space). A metric space is a set M together with a metric, i.e. a function
d: M x M — R, such that

(i) Ve e M, d(z,x) =0,
(i) Yo,y € M, d(x,y) = d(y, z),

)
(i) Va,y,z € M, d(z,z) < d(z,y) + d(y, 2),
(iv) Ve,y € M, d(z,y) =0 =z =y.

If d satisfies conditions (i), (ii) and (iii) only, it is called a semimetric.

Example 1.2 (Graphs and graph distance). A graph is a pair G = (V, E), where V is a set and
ECV® ={pCV, |p| =2}. Elements of V are called vertices and elements of E are called edges.
Given e = {x,y} € E (which we shall also denote by xy or yz), we say that x,y are the end vertices
of e. We also write x ~ y to mean that vy € E.

A walk in G from xq to x, is a sequence xg, T, ...,T, of vertices of G such that x;_1 ~ x; for all
1 << n. Thelength of the walk is n. If x; # x; whenever 1 < j —i < n, the walk is called a path
from xqy to x,. We say that G is connected if there is a walk (equivalently, a path) between any two
vertices of G.

The graph distance dg on V' is defined as follows: dg(x,y) is the minimal length of a path in G
from x to y.

For example:

o K, is the complete graph on n vertices (i.e. any two vertices are connected).



0 ife=y

The graph distance is given by di., (x,y) = {1 therwise
otherwise

o P, is the path of length n: V = {xg,21,...,2,} and E = {z;_q12;, 1 <i < n}.
Py

The graph distance is given by dp, (x;,x;) = |i — j|.

o C, is the cycle of length n: V = {xq,...,2,} and E = {x;x;1q1, 1 <i<n}U{xix,}.

-

Cs

o B, is the rooted binary tree of depth n.

£

B,

o H, is the Hamming cube: V ={0,1}" and x ~ y iff |{4, z; # y;}| = 1.
The graph distance is given by dg, (z,y) = |{i, =; # y:}|.

Example 1.3 (Word metric on a group). Let G be a group generated by some subset S. We always
assume that e & S and that S is symmetric: = € S for all z € S. The word metric on G is defined

by
dg(z,y) :min{nEN, Jdaq,...,a, €5, x_ly:al---an}.

The Cayley graph C(G,S) has vertex set G and x ~ y iff 27y € S. The graph distance on G is
exactly the word metric.

Example 1.4 (Cut semimetric). A cut on a set M is a partitioning of M into S and M\S. The
corresponding cut semimetric dg is given by

0 ifx,ye S oraz,ye M\S

1 otherwise

dS(‘rv y) = {
Definition 1.5 (Normed space). A normed space is a vector space V over K = R or C equipped
with a norm, i.e. a function ||-|| : V — R such that
(i) Ve e V, VA €K, [[Az| = [A] - ||,

(i) Vo,y € V, [z +yll < [zl + llyll,



(iii) Vz €V, ||z|| = 0 = 2 = 0.

Then d(x,y) = ||z — y|| defines a metric on V. If V is complete, then it is called a Banach space.
If ||| satisfies conditions (i) and (ii) only, then it is called a seminorm.
Given a normed space V', we define:

o The closed unit ball of V: By ={x €V, ||z| < 1},
o The unit sphere of V: Sy ={x € V, ||z|| = 1}.

Example 1.6 (Classical sequence spaces). o [ is the space R" together with the norm |||, for
I <p<oo.

o [, = {(xi)i>1, S0 alf < oo} together with the norm [|-[|, for 1 < p < oc.
o [ = {(xl-)@l bounded} together with the norm ||-|| ..

o More generally, for a set S, €~ (S) is the space of bounded functions S — R together with the
norm ||-|| .-

= {(mi)l}l, Ti O}, a closed subspace of {o.
Example 1.7 (Classical function spaces). Let (2, F, u} be a measure space.
o Ly(p) ={f: Q= R measurable, [q|f|" diu < oo} together with the norm ||| ,.
o Loo(p) ={f: Q2 — R measurable and essentially bounded} together with the norm ||-|| ..

o IfQ=10,1] and p is the Lebesgue measure, we write L, for L,(u).

o For a compact space K, C(K) is the space of continuous functions K — R, a closed subspace

of loo(K).

Definition 1.8 (Hilbert space). An inner product space is a vector space V' with an inner product
(«,-) : V xV — R (symmetric, bilinear, positive definite). Then V becomes a normed space with

||| = \/{z,x). If V is complete for this norm, it is called a Hilbert space.

1.2 Isometric, Lipschitz and bilipschitz embeddings

Definition 1.9 (Isometric, Lipschitz and bilipschitz embeddings). Let f : M — N be a map between
metric spaces.

(i) f is isometric (or an isometric embedding) if d (f(z), f(y)) = d(z,y) for all z,y € M.

(ii) f ¢s Lipschitz if there exists b > 0 such that d (f(z), f(y)) < b-d(x,y) for all x,y € M. The
Lipschitz constant of f is defined by

(). f)
Liplf) = =iy

(iii) f 4s a bilipschitz embedding if there exist a,b > 0 such that

a-d(z,y) <d(f(x), f(y) <b-d(z,y), (%)
for all x,y € M. The distortion of f is defined by

dist(f) = inf{s, a,b >0, (x) holds for f} .

4



Remark 1.10. (i) If f : M — N is a bilipschitz embedding with a = b, then f is a scaled isometric
embedding.

(ii) The definitions of Lipschitz and bilipschitz embeddings also make sense for semimetrics.

(iii) If f is a bilipschitz embedding satisfying (%), then f is Lipschitz with Lip(f) < b; moreover f
is injective and ' : f(M) — M is Lipschitz with Lip (f =) < L. We have in addition

dist(f) = Lip(f) Lip (£ ') -

Definition 1.11 (Morphisms of normed spaces). Let T : X — Y be a linear map between normed
spaces.

(i) The following assertions are equivalent:

(a) T is continuous.

(b) T is bounded, i.e. there exists C > 0 such that ||Tz|| < C'||z| for all z € X.
(¢) T s Lipschitz.

In that case, we define ||T'|| = Lip(T) = sup,cp, ||T|.
(i) We say that T : X — Y is an isomorphism if T' is a bijection, and both T and T~ are bounded.

(iii) We say that T is an isomorphic embedding or an into isomorphism if one of the following two
equivalent assertions is satisfied:

(a) T is an isomorphism between X and T(X).
(b) T is bilipschitz.
(iv) We say that T is an isometric (isomorphic) embedding if ||Tz|| = ||z|| for all z € X.
Notation 1.12. Let X,Y be normed spaces.

(i) We write X —¢ Y, and we say that X C-embeds into Y if there is an isomorphic embedding
T: X — Y with dist(T) = |T| - |77 = C.

(ii) Hence X <1 Y means that there is an isometric embedding X — Y.
(iii) We write X ~Y if X, Y are isomorphic.

(iv) We write X 2Y if X,Y are isometrically isomorphic.

1.3 Examples of embeddings
Example 1.13. (i) € <1 €, by (7)1, — (71, .., 70,0,...,0,...).

i

(ii) €p =1 Lp by (7)o — X2y W]IA” where (A;);5, are pairwise disjoint measurable sets of
positive measure.

Proposition 1.14. If (Q2, i) is a measure space and X C L, (2, ) is separable, then X < L,,.

Proposition 1.15. For alln € N and for all 1 < p < 00, ly <1 Ly,



Proof. First case: 1 < p < oo. Let B = By and S = Sy and let A be the Lebesgue measure on B.
Since A is rotation invariant, the value of

/@) dAw)

is the same for all © € S — call it a. Define T': ¢§ — L,(B, \) by

(Tr)(w) = 22

al/P ’
Then T is linear and

[z )l
ITally = [ B2 axw) = fal}

for all = € 5. Hence (5 < L, (B, \) <1 L, by Proposition 1.14.
Second case: p = co. Use Proposition 1.17 below and Example 1.13.(ii). m

Definition 1.16 (Dual space). Let X be a normed space. The dual space X* of X is defined by
X" =B(X,R)={f: X — R linear and bounded} ;

it is equipped with the norm defined by || f|| = sup,cp, [|f(z)]].
By the Hahn-Banach Theorem, for all x € X, there exists f € X* such that ||f]| = 1 and
f(z) = ||=||. It follows that

|l = max g(x).

Proposition 1.17. Let X be a separable normed space. Then X <1 l4.

Proof. Let {x,, n € N} be dense in X. For all n € N, choose f,, € Sx« such that f, (z,) = ||x.| (by
Hahn-Banach). Define T': X — (o, by

T = (fu(*))pen

Given =z € X, we have

(@) < ([ full - ] = [l]
for all z, so T is well-defined, and it is linear and bounded with ||T|| < 1. Moreover, for n € N,
| Txy,|| = ||zn]|, so T is isometric on a dense subset, and it follows by continuity that T is isometric. [

Remark 1.18. The argument of Proposition 1.17 shows that, for any normed space X, there is a
set S such that X < L (S) (for instance, take S = Sx«).

Corollary 1.19. Let M be a finite metric space. If M embeds into Lo with distortion < D, then M
embeds into L, with distortion < D for all 1 < p < oo.

Proof. This is a consequence of Proposition 1.15. n

Remark 1.20. Given a finite subset M of Ly (2, p), a natural idea to embed M into R would be to
consider f— [o f du. Then we would have

[ du= [gdu < [1f =gl du

with equality if and only if f < g or g < f. This idea leads to the following proposition.

Proposition 1.21. If M is an n-element subset of L1 (Q, i), then M —; (7.



Proof. Let M = {fi,..., fo}. There exists a partition Q2 = [[,¢g, (2= of €2 such that

0, C {w € Q, fry(w) < fre)(w) < -+ < fw(n)(w)}‘

| gidu= [ £ dul.

Now define T : M — (% by Tf; = (fﬂw fi du) o the above computation shows that T is an
isometric embedding. ! O

Then

=5l = [1f=fldn=3 [ 1fi=fildu= 3

€S, €Sy,

Example 1.22. (i) The cycle Cy embeds bilipschitzly into (3 with distortion \/2, but it does not
embed isometrically. This is because {5 has the unique midpoint property: for all x,y € {5,
there is at most one point y € €y such that

1
d(ﬂf,y) = d(y7 Z) = §d(l’72)
Cy does not have this property.

(ii) Any n-element set in a Hilbert space embeds isometrically into {3, but we cannot do better in
general. However, we shall prove that for any e > 0, there exists C' > 0 such that any n-element
set in a Hilbert space embeds into (3", where m = clogn, with distortion less than 1 + ¢.

Remark 1.23. If M is a finite metric space, N is a metric space and |N| > |M|, then M embeds
bilipschitzly into N.

Definition 1.24 (Uniformly bilipschitz embeddings). Given families (M,), 4 and (Na)
spaces, embeddings f, : M, — N, are called uniformly bilipschitz if

aca Of metric

sup dist (f,) < o0.
acA

1.4 The sparsest cut problem

Definition 1.25 (Sparsest cut problem). Let G = (V, E) be a finite connected graph. We are given
two functions:

e The capacity C': E — R,
o Thedemand D :V xV — R,.

A cut of G is a partioning (S,V\S) of V.. The capacity and the demand of the cut are defined by

C(S,V\S)= > C(w) and D (S,V\S) =) D(u,v)
uvEL ucs
u€esS veES
vgS

respectively. If D (S, V\S) # 0, the sparsity of the cut is gg“ﬁi?

The problem is to minimize the sparsity over all cuts. This is N P-hard.

Remark 1.26. Here is a reformulation of the sparsest cut problem: minimize

ZquE’ C’(uv)dg(u, U)
Zu,vGV D('LL, U)dg(u, U)

over all cuts with nonzero demand, where dg is the cut semimetric (c.f. Example 1.4).
We denote by ©*(C, D) this minimum.



To linearize this problem, we try instead to minimize the quantity

> Cluv)d(u,v)

uwveE

over all semimetrics d satisfying 3, ,ev D(u,v)d(u,v) = 1. This is a linear programming problem.
We denote by o(C, D) the minimum and dy;, a semimetric that achieves it.
We have clearly ¢(C, D) < ¢*(C, D).

Lemma 1.27. Let (M,d) be a finite semimetric space. Then (M,d) embeds isometrically into Ly if
and only if d is a nonnegative linear combination of cut semimetrics.

Proof. Note that, by Example 1.13 and Proposition 1.21, (M, d) embeds isometrically into L if and
only if it embeds isometrically into ¢¥ for some integer k.
(«=) We assume that there are cuts (S;, M\S;),,., and nonnegative reals (@), ;c; s-t.

k
d = Z@idsi'
i=1
Define
frzeMr— (ails, (7)) € 4,

and check that || f(z) — f(y)l, = d(a.y).
(=) Assume that there is an isometric embedding f : M — ¥ for some k € N. For 1 < i < k,
enumerate the set {f(x);, v € M} as ;1 < -+ < Bim, and let

Sy ={r € M, f(x); < By}

for 1 <j <m;. Now fix z,y € M and 1 < i < k. Suppose that f(x); = 5;j, < f(y); = Bij,- Hence
x € 5;; for j > 73 and y € S;; for j > jo, which means that

dSij(x7y) =l<—=n<j<j

Therefore
m; J2
Y (Bij = Bij1)ds,(x,y) = D> (Bij— Bij-1) = Bige — Bijy = [F(@)i = f(y)il,
Jj=2 Jj=j1+1
so that .
D> (Bij — Bij-1)ds, (z,y) = 1 f(x) = f(W);, = d(z,y). O
i=1 j=2

Theorem 1.28. Assume that the vertex set V' together with the minimizing semimetric dy,;, embeds
into Ly with distortion at most K. Then

1
?¢*(C7D> < 90(O7D) < 90*(07 D)

Proof. Let f: (V,dmm) — L1 be an embedding with dist(f) < K. Define a semimetric d on V' by
d(z,y) = || f(x) — f(y)|];- Since dist(f) < K, there exists a > 0 such that

admin(z,y) < d(z,y) < Kadmin(z,y)

for all z,y € V. By Lemma 1.27, there are cuts (55, V\S;),,, and nonnegative reals (a;),;,, such
that

k
d= Z aid,gi.
1=1
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Then
> wver C(uv)dmin (u, v)

C,D) =
(70( ) Zu,vGV D(“v U)dmin(uv 'U)
Vi
Zf: Q; C(uv)dg, (u,v
i ZU’UGE O(UU)CZ(U, U) _ i ' u%E ( ) > ( )
T K Yupev D(u,v)d(u,0)  KYF o Y D(u,v)ds,(u,v)
u,weV
05
LYF oy 10 1 oy 1
= — 1= 2 i L 2 ey Y 2 —¢* 7D )
Kt 6,2 K o6 © KRy, 2 g9 (GD)
where I = {1 <i <k, §; > 0}. O

1.5 Coarse and uniform embeddings

Definition 1.29 (Coarse and uniform embeddings). Let f : M — N be a map between metric spaces.
Assume there exist (not necessarily strictly) increasing functions py, p2 : Ry — Ry such that

p1(d(z,y)) < d(f(x), f(y)) < p2 (d(z,y)) (%)
forall x,y € M.
(i) We say that f is a coarse embedding if (x) is satisfied with lim ., p; = +o0.

(ii)) We say that f is a uniform embedding if one of the following two equivalent conditions is
satisfied:

(a) The inequality (x) is satisfied with limg+ po = 0 and p1(t) > 0 fort > 0.

(b) The inequality (x) is satisfied, f is uniformly continuous, injective, and f=*: f(M) — M
s uniformly continuous.

Example 1.30. The projection f: R x [0,1] — R is a coarse embedding, with p,(t) = max (0,t — 1)
and po(t) =t.

Proposition 1.31. For 1 < q < oo, there exists a map T : Ly (2, 1) — Ly (2 X R, @ ) which is
simultaneously a uniform and coarse embedding.

Proof. Define T as follows: for f € Ly (Q, u),

+1 if0<t< fw)
Tf(w,t)=<—1 if fw)<t<0.

0 otherwise

Hence T'f € Lo (2 X R, p® A) and, for f,g € Ly (Q, p),

1 ift e [f(w),g(w)]
0 otherwise '

Tf(w,t) = Tg(w,t)| = {
Therefore,

ITf = Tglly = [ [ [T5(w,t) = Tglw. )" dtdn(ew) = [ 17) = 9(e)| dn(e) = IIf gl

This shows that T'f € L, (2 xR, u® A), and T : Ly (2, 1) — L, (2 x R, u ® \) is simultaneously a
uniform and a coarse embedding (with p;(t) = pa(t) = t'/9). O

9



Lemma 1.32. For all 0 < « < 203, there exists a constant co 3 > 0 such that

(1 — cos (tz))’ N
dt = ¢, :
/R |t|a+l C B |.'L’|

Proof. We first check that the integrand is integrable. We have (1 — cos(tz))” = O (\t]w), SO
the integrand is O (|t]2ﬁ_a_1), which is integrable near 0 because 26 — a — 1 > —1. Likewise,

(1 —cos(tz))’ = O1(1), so the integrand is Oio (|t|*1), which is integrable near oo because

—a— 1< —1. Now let 5
(1 — cos (tz))
— dt.
f(z) /R |t|a+1

For x > 0, we have

— cos(tx))’ — cos ()’
f(x):xo‘/(l(t))m dt:xo‘/R(l())ds:xo‘f(l).

R

Moreover, f(0) =0, and f(—x) = f(x) for all z. It follows that f(x) = |z|* f(1) for all z. O

Proposition 1.33. For 1 < p < ¢ < oo, there exists a map T : L, (2, u) = L, (2 xR, p® X;C)
which is simultaneously a coarse and uniform embedding.

Proof. Define T' by
B 1 — eitf(w)
Tfw.t) = v

W = /2 (1 = cos®)"/?. Therefore, using Lemma 1.32,

Note that, for v € R,

24/2 (1 — cos (tf a/2
ITfI] = / / MER ) dt dp(w) = 292¢, 42 /Q |F(w)P du(w) = 27%¢, 4/ A1 -

Moreover, given f,g € L,(Q), we have ‘e”f (w) — eitg(w)’ = ‘1 — eitlf (w)_g(w))’. Applying the above
computation with f replaced by (f — g) yields
ITf =TFlg=2"cpap2 Il = ally- O

Corollary 1.34. For 1 < p < q < o0, there exists a map T : L, — L, which is simultaneously a
coarse and uniform embeddzng

Proof. Apply Proposition 1.33 with (€2, 1) = ([0, 1], ) to get an embedding L, — L, ([0, 1] x R;C).
Then define an embedding L, ([0, 1] x R;C) <4 L, ([-1,1] x R) by

- f if s € (0,1
fros sty = RV, 0) ifs € 0.1
(f(S,t)) if s € [_170)
Since L, ([—1,1] x R) is separable, it embeds isometrically into L, by Proposition 1.14. O

Definition 1.35 (Uniformly coarse embeddings). Given families (M) e, and (Ny),cq of metric
spaces, embeddings fo : M, — N, are called uniformly coarse if there exist increasing functions
p1, p2 - Ry — Ry such that lim, o, p1 = +00 and

pr(d(z,y)) < d(fa(2), fay)) < p2 (d(z,y))
forall o € A and x,y € M,.

Theorem 1.36 (Yu). If M is a uniformly discrete metric space with bounded geometry and M

coarsely embeds into a Hilbert space, then the coarse geometric Baum-Connes Conjecture holds for
M.

Theorem 1.37 (Kasparov, Yu). If M is a uniformly discrete metric space with bounded geometry

and M coarsely embeds into a uniformly convexr Banach space, then the coarse geometric Novikov
Conjecture holds for M.
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2 Fréchet embeddings, Aharoni’s Theorem

2.1 Isometric embeddings into /.,

Theorem 2.1. Let M be a metric space.
(i) M < loo(M).
(ii) If M is finite with |M| = n, then M <, ;1.
(iii) If M is separable, then M < l«.
Proof. (i) Fix xy € M and define f : M — (o (M) by
f(z) =d(-,x) —d(-,z9) € RM.
For y € M, we have

[f(@)(y)] = ld(y, x) — d(y, x0)| < d(x,20),
so f(z) € loo(M). Now for z,z € M,

If(2) = f(D)loo = lld (- 2) = d (-, 2)
1f () = F ()l = [f (@) (2) = f(2)(2)] =

hence || f(z) = f(2)[l = d(z, 2).

(ii) If M = {xo,...,zn_1}, then the function f: M — 2" defined by f(x) = (d (2s,20)); ;1
works.

(iii) If M is separable, then it has a countable dense susbet S C M. Two possible proofs:

« S embeds isometrically into ¢, by (i), and this extends to an isometric embedding M < (.

o There is an isometric embedding f : M < (o (M) by (i). But X = Span f(M) is a Banach
space, so by Proposition 1.17, X < /. O

Definition 2.2 (m.). For n > 1, we define my(n) to be the smallest integer m such that every
n-element metric space embeds isometrically into £2.. Theorem 2.1 implies that

Moo(n) < n — 1.

2.2 Background on Ramsey theory and graphs

Theorem 2.3 (Ramsey). For all t > 1, there is an integer n > 1 such that, if edges of K,, are
red-blue coloured, then there is a monochromatic copy of K; in K,.

We denote by R(t) the least n that works. It is easy to prove that R(t) < 4'. It is also known that
R(t) = ¢ for some ¢ > 1.

More generally, given graphs Hy, Hy, we denote by R (Hy, Hy) the least n such that, whenever
edges of K, are red-blue coloured, then there is either a red copy of Hy or a blue copy of Hy inside
K,.

In particular, R(t) = R (K, K3), and R (Hy, Hy) < R (max {|H|, |Ha|}).

Definition 2.4 (Bipartite graphs). A graph G = (V, E) is called bipartite if there is a partition
V =V UV, such that, for all x,y € V with xy € E, we have either x € Vi,y € Vo orx € Vo, y € V.
The sets Vi, Vo are then called vertex classes.

If E = {xy,x € Vi, y € Vo}, then G is the complete bipartite graph with vertex classes Vi, Vs,
denoted by Ky, v, or K| |vy|-

Example 2.5. Ky5 = Cjy.
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Definition 2.6 (Complement of a graph). Given a graph G, its complement G has verter set
% (@) = V(G) and edge set E (@) =VO\E(G).

Notation 2.7. If G = (V, E) is a graph, we define a metric p on V by
0 ife=y

p(r,y) =131 ifzycE.
2 otherwise

2.3 Lower bound on m.(n)

Lemma 2.8. Let G be a graph such that (G, p) <1 £%.. Then the edge set of G can be covered by at
most k complete bipartite subgraphs of G.

Proof. Let f: (G, p) — (% beisometric. For 1 < i < k, let a; = max,cq f(2); and 8; = mingeq f(2);.
Then

o — i = max (f(2); = f(y)i) < max [[f(2) = f(y)lc = max plz,y) < 2.

Weset [ ={ie{l,...,k}, oy — B; = 2}. We thus have
ry € E(G) <= plr,y) =2<=Fi €I, |f(x); — fy)i] =2
= Jiel, (f(z)i=a; and f(y)i =) or (f(x)i =75 and f(y)i = o).
Hence, if V! = {z € V, f(z); = o;} and V2 ={z €V, f(z); = 3;}, then

E(G)=UE (K y2). O
iel

Lemma 2.9 (Spencer). There exists o > 0 such that

;o\ 2
K — :
R(C47 t) > o (10gt>
Theorem 2.10 (Ball). There exists C > 0 such that for alln > 2,

Moo(n) = n — Cn?*logn.

Proof. Note that there exists b > 0 such that for all n, if t = [bnz/ 3log n}, then

£\ 32
n<oal|l— )
(logt)

Now fix n > 2 and let t = [bn2/3 log nw By Lemma 2.9, n < R(Cy, K;). Therefore, there exists a
red-blue colouring of K,, without a red Cy or a blue K;. We let G be the blue graph and k = mq.(n).
Therefore, (G, p) =1 €% by definition, so Lemma 2.8 implies that the red graph G is covered by at
most k& complete bipartite subgraphs Kyi vz, ..., Ky ye. Since Cy = Ko5 € G, one vertex class in
each of the complete bipartite subgraphs is of size 1, so we may assume that |V!| = 1 for all i. If
S = U, V!, then there is no edge in G between vertices of V\S, i.e. the graph induced by G on
V\S is complete. Since K; Z G and |S| < k, it follows that n — k < |[V| = |S| = |V\S| <t -1, so

k=men)2n—t+1> n—Cn*?logn
for some constant C. ]

Remark 2.11. Since R(t) > ¢ for some ¢ > 1, the method used to prove Theorem 2.10 won't give
a lower bound better than n — C'logn on my(n).
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2.4 Nonlinear Hahn-Banach Theorem

Remark 2.12. We aim to prove that n — meo(n) —— +o0.

Lemma 2.13 (Nonlinear Hahn-Banach Theorem). Let M be a metric space, AC M, and f : A — R

a L-Lipschitz map. Then there is a L-Lipschitz extension f : M — R of f.
Proof. Fix xy € M\ A and define

flz) ifzeA

o if e =axy

f:xGAU{xo}r—>{

We need to choose a value of o € R such that |a — f(z)| < Ld (z9,x) for all z € A, i.e.
fly) — Ld (y,z0) < a < f(x) 4 Ld (2, zo)
for all x,y € A. Such an « exists if and only if
f(y) — Ld(y,z0) < f(x) + Ld (z,20) (%)
for all =,y € A. To prove (x), note that
fly) = f(z) < Ld(z,y) < Ld (z,20) + Ld (y, 7o)

for all x,y € A.
Now if M\ A is finite or countable, apply the above argument recursively to get an extension to
M. In the general case, use Zorn’s Lemma to get a maximal extension (M , f); the above will imply

that M = M. O
Proposition 2.14. If M s a finite metric space and A C M, then

Ay (AR — Moy (MR

Proof. Let f = (fl, e ,f‘A|,k) : A — (A17F be isometric. Then each map f; : A — R is 1-Lipschitz,
so by Lemma 2.13, there is a 1-Lipschitz extension g; : M — R for 1 <i < |A| — k. Now enumerate
M\A as {y;, |A| — k <i<|M|—k} and define

gi:x € M+—d(z,y;) €R

for |A| —k <i<|M|—k. Then g = (gl, . ,g‘M|_k> : M — (IM=F g an isometric embedding. [

2.5 More background on Ramsey theory and graphs

Notation 2.15. For s > 2 andn € N, let
K® ={AC{1,...,n}, |A| =s}.
For instance, K\* = E (K,).

Proposition 2.16. For all s,t,c > 1, there exists n > 1 such that, if K®) is c-coloured, then there is
a monochromatic copy of K\, i.e. AC {1,...,n} with |A| =t such that A®) = {B C A, |B| = s}
is monochromatic.

Definition 2.17 (Trees). A tree T is a connected acyclic graph. Equivalently, for all x,y € T, there
s a unique path from x to y.

If diam(7T") = max, yer d(x,y) < 4 (for the graph distance), then there is a vertex ¢ € T' such that
d(z,c) <2 for all x. Call this vertex ¢ a centre of T'. Vertices in I'(c) = {a € T, ac € E} are called
main vertices. Fvery other vertex is connected to a unique main vertex.

Definition 2.18 (Orientation of a graph). An orientation of a graph G is an assignement of a
direction @ or gﬁ to each edge vy € E.

The orientation is called alternating if for all x € V(G), either all edges incident to x are oriented
out of x (i.e. in the direction T() or towards x.

A connected graph has either zero or two alternating orientations. A tree always has exactly two.
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2.6 Gap between n and mq,(n)

Definition 2.19 (Generic metric space). A metric space ({x1,...,x,},d) is generic if the (2‘) dis-
tances (d (i, 7)) <, <, are linearly independent over Q.

Given three distinct points x,y, z in a generic metric space, we have d (x,z) < d(z,y) + d(y, 2).

Theorem 2.20. For all integers k € N, there exists N € N such that for alln > N, my(n) < n—k.
In other words, n — mog(n) —— +00.

Proof. Step 1: we can restrict to generic metric spaces. Consider an arbitrary metric space M =

({x1,...,2,},d). For j > 1and 1 <r < s < n, we can pick a,.5 € (%,%) such that d; (z,,z,) =
d (x,, xs) + s defines a generic metric. If for all j there is an isometric embedding f; : (M, d;) — (2
for some m, then we may assume without loss of generality that Im f; is bounded independently of

7. By compactness, after passing to a subsequence, we have
fi (@) ;;? f ()

for all r. Thus f: (M,d) — (2 is also an isometric embedding.

From now on, M is an n-element generic metric space, and the elements of M are real numbers
(but d is not the distance induced by R).

Step 2: characterisation of isometric embeddings in terms of Lipschitz graphs. Given a 1-Lipschitz
map f: M — R, we define its Lipschitz graph G(f) with vertex set M and such that

vy € B <= |f(z) — f(y)| = d(z,y).

An edge xy is given the orientation 77 if and only if f(z)— f(y) = d(x,y). (For instance, if f = d(-,a),
then G(f) is a tree of diameter 2 centred at a; this is because f(z) — f(y) < d(x,y) for x # y in
M\{a} since d is generic.) Now a map f : M — (7 is an isometric embedding if and only if its
coordinates (f; : M — R), <icm are 1-Lipschitz and for all z # y, there exists 1 < i < m such that
xy € E(G(f;)). It follows that M < ¢7 if and only if the edges of the complete graph on M can
be covered by at most m such Lipschitz graphs.

Step 3: sufficient condition for a map to be 1-Lipschitz. Let T" be a tree on M with diam(7") < 4.
Fix a vertex xg € T, a real a € R, and an alternating orientation of 7. Consider the unique
f: M — R satistying f (zo) = a and f(z) — f(y) = d(z,y) for all z{) € E. Then f is 1-Lipschitz if
the following condition is satisfied:

d(w,z) +d(y,z) <d(z,y) +d(w,z2), ()
for all paths wxyz in T'. Consider indeed two vertices z,y € T. We need |f(z) — f(y)| < d(z,y).
o If x =y or xy € E, this is true by construction of f.
o If there is a path xzy, then
@) = FW)] = 1f@) = £(2) + F(2) = )] = ld(x, 2) — d(z,9)] < d(z,y),
the last inequality being strict by genericity of the metric.

o If there is a path zwzy, then

[f(2) = )l = |f(z) = f(w) + f(w) = f(z) + [(2) = fy)]
= |d(z,w) = d(w, z) + d(z,y)]

d(z,w) —d(w, z) + d(z,y) (2) d(z,y)
(8) (8)
or —d(z,w)+dw,z)—d(z,y) < d(z,z) —d(z,y) < d(z,y)

Y

where (A) refers to the triangle inequality, which is strict in a generic metric space.
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o If there is a path xruwzy, the reasoning is similar.

We say that a tree T on M is admissible if it has diameter at most 4 and satisfies ().

Step 4: given distinct points ¢, aq,...,a, in M, there is a unique admissible tree T' on M with
centre ¢ and main vertices aq,...,a,. Indeed, such a tree T is admissible if and only if each vertex
r € M\{c,ay,...,ap} is joined to a main vertex a € {ay,...,a;} such that, for all main vertices
b # a, we have d(z,a) + d(c,b) < d(a,c) + d(x,b), or in other words,

d(z,a) —d(a,c) < d(xz,b) — d(b,c).

Hence, there is a unique possible choice of edge xa, where a is chosen to minimise (d(z,a) — d(a, c)).
This tree T' will be denoted by T (c; ay, ..., ap).

Step 5. We colour M™ with colour set &3 as follows: given w < x < y < z in M (recall that
elements of M are assumed to be real numbers, so they are ordered), let

Ry = d(w,x) + d(ya Z)?
Ry = d(w,y) + d(z, 2),
Ry =d(w, z) + d(z,y).

We give wxyz the colour 4, j,k (i.e. the element of &3 given by 1 — 4, 2 — j and 3 — k) if
R; > R; > Ry. This defines a 6-colouring of M®.

Main claim: for all k € N, for all ¢ € G5, there is a t. € N such that every monochromatic metric
space of size t. and colour ¢ can be covered by at most t. — k admissible trees.

Proof of the claim.

e (Case 1: ¢ =2,1,3. In this case, we show that there is no monochromatic metric space M of
colour ¢ and size at least 5 (therefore, t. = 5 will work). Indeed, assume otherwise and pick
u<w<zx<y<zin M. We have

d(u,w) +d(z,y) > d(u,y) + d(w, ),
d(w, x) +d(y, z) > d(w, 2) + d(z,y),
d(u,y) + d(w, z) > d(u,w) + d(y, z).

Summing these inequalities yields 0 > 0, a contradiction.
e Case 2: ¢ =3,1,2. Just replace > by < in the first case.

o Case 3: ¢ =1,3,2. We then claim that, if for all M monochromatic of colour ¢ and of size n,
all but m edges of Kj; can be covered by s admissible trees, then for all M’ monochromatic of
colour ¢ and of size n+ 2, all but m — 1 edges of K, can be covered by s+ 2 admissible trees.
To prove this mini-claim, we take M’ monochromatic of colour ¢ and of size n + 2, we write
M = MU{d, b}, where a < a' <V <band MN((a,d]UIV,b)) =2. By assumption, M can
be covered by s admissible trees; by Step 4 we may extend them to the whole of M’. We then
add the two trees T (a;a’,b) and T (b;a’,b'). Hence every x € M'\ {a,d’,b} is joined to o’ in
T (a;a’,b) and every x € M'\ {b,a’,V'} is joined to V' in T (b;a’,t’). This proves the mini-claim.

k

To apply it, we start with |M| =k, s =0 and m = ( ) and we apply the mini-claim n times

to get M’ with t. = |[M'| = k+2(§) =k s= 2(5) :2tc —k and m = 0.

e Case 4: ¢c=1,2,3. We prove the main claim by induction on k. For k£ =1, t. = 1 will do. Let
k > 1 and assume t. works for k. We prove that 2¢. + 3 works for k + 1. Take

M={-1,0,1,2,...,te+1,t.+2,...,2t. +1}.

Consider T'(0; —1,2), T'(1;0,2) and T'(t. + 1 + ¢;4,i + 1) for 1 < i < t.. These cover all edges
except perhaps edges between vertices in {¢t. +2,...,2t. + 1}. Those can be covered by t. — k
trees by the induction hypothesis. Therefore, we need 2t.+t.—k = 2t.+2—k = |[M|—(k + 1).

15



e Case 5: ¢ =2,3,1. We show that t. = 2k works for k by writing M = {—k,...,—1,1,... k}
and considering the trees T (—i; —k, —k+1,...,—i—1,1,... k) for 1 <i < k

o Case 6: ¢ =3,2,1. We show that t. = 4k+1 works for k by writing M = {0,1,...,4k} and con-
sidering the trees T'(0;i,4k +1 —i) for 1 < ¢ < 2k and T (4;2k + 4,2k +i+1,...,4k + 1 — 1)
for1 <i<k.

Step 6. Let t = max cg, t.. By Ramsey theory (Prop081t10n 2 16), there exists N € N such that,

if K N is 6-coloured, then there is a monochromatic copy of Kt So given n > N and an n-element
generic metric space M, there is a colour ¢ € &3 and a subset A C M of cardinal ¢, such that A is
monochromatic. By the claim, the complete graph on A can be covered by |A| — k admissible trees,
so by Step 2, A < ¢41=% "and by Proposition 2.14, M «; (M=% 5o that m.(n) < n — k. ]

2.7 Upper bound on my(n)

Definition 2.21 (m,). Note that m.(n) can be defined equivalently as the least integer m such
that every m-element subset of some space Ly, (2, 1) embeds isometrically into (7 (compare with
Definition 2.2).

For 1 < p < oo, we define similarly m,(n) to be the least integer m such that every n-element
subset of some space Ly, (2, ) embeds isometrically into (}".

Remark 2.22. Proposition 1.21 implies that
mi(n) < nl,

and Ezxample 1.22.(i1) implies that
ma(n) =n — 1.

Moreover, Theorems 2.1 and 2.10 imply that
n—Cn*3logn < Meo(n) <n — 1.

Lemma 2.23 (Caratheodory’s Theorem). Given L C RY,

N
conv L = {Zti%, (zo,...,xx) € LN (to, ..., tx) € (RY) N+1

|Mz

In particular, conv L is compact if L is compact.

Proof. Given x € conv L, we write x = >7", t;x; with ; € L, t;, > 0 and }7", ¢, = 1, and we
assume that m > N + 1 (otherwise the result is obvious). Then zi,...,z,, are affinely dependent
(i.e. 1 — xg,...,21 — Ty, are linearly dependent), so there exist Aq,..., A\, not all zero such that
S =0and X", \x; = 0. Forany s > 0, we have >/, (t; — s)\;) = Land 1%, (8 — s\;) x; = .
If \; <0, then t; — 3/\ > 0, so we take

t,
= min{ -, \ o}.
S mll’l{)\ >

%

Now t; —sA; = 0 for all 7 and there is at least one i such that ¢; — s\; = 0. Therefore, we can decrease
m as long as m > N + 1, which proves the result. O

Theorem 2.24. For 1 < p < oo and for n > 2, we have

my(n) < (Z)
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Proof. Fix n > 2. Given an n-tuple M = (21, ...,z,) in some space L, (€2, u1), let

Onr = (s —zll2),__ € RN,

1<i<g<n

where N = (g) Consider the set C' of such 0y for all n-tuples M in some L, (€2, ut).

The set C is a cone in RV, i.e. td € C for allt > 0 and # € C. Moreover, C is stable by addition:
if M = (z1,...,2,) is a n-tuple in L, (Q, ) and M’ = (24,...,2]) is a n-tuple in L, (', i/), then
Or + O = On where N = ((z1, 7)), ..., (2, 2),)) in L, (QI1 Q). Hence, C' is convex.

Say that an element 6 € C' is linear 1f there exists (tl, ... tn) € R™ such that 6;; = |t; — t;]” for
all 1 <7 < j < n. Define

K:Cm{eeRN, > eij:1},

1<i<j<n

L={0€K, 0 islinear} = {(|ti — il ) 1cicijan s (s tn) ERT, St -t = 1}.

1<i<j<n
The set L is compact, and K is convex, so conv L C K.
Given 0 = 0y € K, with M = (z1,...,2,) in L,(2, u), we can approximate each z; with
simple functions y; such that ¢ = (Hy, il )

P/1<i<j<n

Q= U, A, such that Yi|a, is constant for all 4,7. We let

p
Pr = .
P/ 1<i<j<n

Then ¢, is linear and ¢ = X7 ¢, Now if o = 3 1icjcn (1), then SR a,=1and

Q= Zozr <S0r> € conv L.

Ay

€ K. Hence we have a measurable partition

Yija, — Yja,

This shows that K C conv L. But Caratheodory’s Theorem (Lemma 2.23) implies that conv L =
conv L, and therefore
K = conv L.

Now pick 6 € O, write § = >V, 0., where 6, is linear for all 7 (note that {9, Dicicj<n Uij = 1} is
(N — 1)-dimensional). For each r, there exist #,; € R such that 0, = ([t,i —t5["); <, <, =0
M = (x1,...,2,) in L, (Q, ), define f: M — €Y by f(x;) = (tri),<,< - Thus, for 1 <i<j<n
N
1f (i) = f ()l = Z [tri = tesl” =D (0n)i; = 03 = Il — a5l O
r=1

Remark 2.25. For 1 < p < 2, Theorem 2.2/ is essentially optimal: we can show that
my,(2n+1) > n

2.8 Aharoni’s Theorem

Remark 2.26. Given Banach spaces X and Y, if X bilipschitzly embeds into Y, must X isomor-
phically embed into Y ¢

The answer is yes if Y is separable and isomorphic to the dual of some Banach space W. But
Aharoni’s Theorem will show that the answer is no in general.

Notation 2.27. (i) In a metric space M, for x € M and 6 > 0, let

Bs(z) ={y € M, d(y,z) < 6}
A subset A C M is said to be 0-dense in M if for all x € M, d(z, A) < 6.
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(ii) Given a set S, let
co(S) ={f €l(9), Ve >0, {s € S, |f(s)] > e}| < o0}
Hence co = co(N) = ¢o(S) if S is countably infinite.

Lemma 2.28. Let M be a separable metric space, A > 2, a >0, N C M. Then there is a collection
(M;),e; (with I CN) of subsets of N such that

(i) Vee N, Jie I, d(x,M;) <a
(i) Vee M, |[{i € I, d(z,M;) < (A —1)a}| < oc.
(iii) Vi € I, diam (M;) < 2)a.

Proof. By rescaling the distance in M, we may assume that a = 1. Since M is separable, so is N,
and therefore there are countable sets Z C N that is 1-dense in N and Y C M that is 1-dense in
M. By replacing Y by Z UY, we may assume that Z C Y. We enumerate Y as {y;, i € I} (with
I CN) and we set

M; = (By (y:) N 2)\ (UM)
<t

Therefore, for all i € I, M; C Z C N. We now check (i) — (iii).

(iii) For all i € I, M; C By (yi), so diam (M;) < 2\ = 2)a.

(i) Given = € N, there is i € [ such that y; € Z and d(x,y;) < 1. Thus y; € By (y;) N Z C
Ui<j<i Mj, so there exists j <4 such that d (z, M;) <1 = a.

(ii) Given x € M, there exists ig € I such that d(x,y;,) < 1. If d(z,M;) < A — 1 for some
i, then d(y;,,M;) < A\. Now for i > iy and y € M;, the facts that y;, € U;c;, M; and M; N
(Uj<i0 Mj) = @ imply that d (yi,,y) = A, so d (yi,, M;) > X and d (x, M;) > XA — 1. Therefore, the set
{i € I, d(x,M;) < A — 1} has at most i, elements. O
Theorem 2.29 (Aharoni). For any e > 0, any separable metric space embeds into co with distortion
at most 3 + €.

Proof. Given a separable metric space M and € > 0, choose A > 2 and n > 0 such that

3A
—(1 .
S 2( +n) <3+e¢
For k € Z, let a, = (1+n) ", Fix a centre ¢ € M and let
Mk B M\BS)\ak/2(c)-

Apply Lemma 2.28 to M and N = My, a = a;, to get subsets (Mj;),.; as in the lemma. Set
S =Zx1I. For (k,i) € S, define

fri:x € M — max{0,(A—1)ax —d(x, My;)} € Ry,

and let f: 2 € M+ (fi(7)) 5 € (R 2"
We first prove that f(z) € ¢o(S) for all z € M. Since (A — 1) ay — 0, it is enough to show

that for any s € Z, the set Ty = {(k,i) € S, fri(x) = (A — 1)as} is ﬁmte For k > s, se have

fri(z) < (A = Dax < (A = 1a,
o (k,i) & Ts for all (k,i) € S with k& > s. Since ay o+, there is r < s such that
d(z,c) < (% + 1) a,. Hence, for k <r, d(x,c) < (% + 1) ay, so for all i € I,

d (z, M) > d (2, M\ Bsra, 2(c)) =
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Therefore, for all (k,7) € S with & < r, fri(x) = 0 and x ¢ T,. Finally, by Lemma 2.28, for each
k € Z, the set
{i €l, fri(r) >0} ={iel, d(z, My;) < (A—1)ax}

is finite, so Ty C Ui_, {¢ € I, fri(x) > 0} is finite.
Thus, we have a map f : M — ¢o(S), and f is clearly 1-Lipschitz. To find a lower bound, fix
x # y in M and choose k € Z such that
3hap < d(x,y) < 3Xak (1+n).

By the triangle inequality, both z and y cannot belong to Bsy,, /2(c), so we may assume without loss
of generality that « € M. By Lemma 2.28, there exists ¢ € I such that d (x, My;) < ag, so

fri(x) = (A= Dag — ap = (A — 2)ay.
Pick w € My, such that d(z,w) < aj. For any z € My;, we have
d(y,z) = d(y,z) —d(x,w) — d(w, z) = 3\a, — a, — diam My; > (A — 1) ag,
so d(y, My;) = (A — 1) a and fr;(y) = 0. Therefore

d(z,y)
34+¢

I1£2) = F0) o > 1fisx) = Fuw) > (3 =Dy = “ L0 =TS 0

(A—2) >

Remark 2.30. The above proof of Aharoni’s Theorem shows that M —3.. cf, where cj(S) =
{f €c(S), Ve eS8, f(x) e Ry}. We can actually show that

sup inf dist(f) =3 and sup inf dist(f) = 2.
M f:M —>c3' M fM —co
bilipschitz bilipschitz

3 Bourgain’s Embedding Theorem

3.1 Dvoretzky’s Theorem

Definition 3.1 (Distortion of a metric space). For metric spaces X,Y , define

or(X) = inf dist(f).
bil'ipschitz

The Ly-distortion of X is c,(X) = cg,(X), the euclidean distortion of X is co(X) = cr,(X).
Corollary 1.19 implies that, for any finite metric space X,

cp(X) < e2(X).

Theorem 3.2 (Dvoretzky). For every n € N and for every € > 0, there exists N € N such that
every Banach space Y with dimY > N contains a (1 + €)-isomorphic copy of 3.

Remark 3.3. (i) The integer N of Dvoretzky’s Theorem can be taken at most exp (%) for some
absolute constant C'.

(ii) Dworetzky’s Theorem implies that
ey (X) < ea(X)

for every finite metric space X and every infinite-dimensional Banach space Y .
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3.2 Padded decompositions and existence of scaled embeddings

Definition 3.4 (Partitions and clusters). We fix a metric space X with | X| =n. We denote by Px
the set of partitions of X. For P € Px, the elements of P are called clusters. For x € X, we let
P(z) be the unique cluster to which it belongs.

Definition 3.5 (Stochastic (padded) decompositions). A stochastic decomposition of a finite metric
space X is a probability measure W on Px. The support of ¥ is

Supp ¥ = {P € Px, ¥(P) > 0}.

Given A > 0 and € : X — (0,1], we say that V is an (g, A)-padded decomposition if for all
P € Supp ¥,

(i) VC € P, diam C < A,
(i) Ve € X, ¥ (d(z, X\P(x)) = e(x)A)

WV
DN |

Definition 3.6 ({,-sum). Given a collection (X;),.; of Banach spaces (with I C N), define (B;c; Xi),
to be the space of sequences (2;),c; € [lier Xi such that Yer ||2:]|* < oo. This is a Banach space with

norm ||-||, defined by
1/q
Jiwoie], = (5 )
i€l

This definition also makes sense when ¢ = oo (replacing Y iy ||| by sup,e; ||| )-
Moreover, there is a subspace (@;c; Xi),, of sequences (;);c; € (Bies Xi)o such that ||z;|| — 0.
1—r 00

Note that, if X; = £y (S;) for all i, then (Die; Ly (5i)), = g (Tier Si)-

I

Lemma 3.7. Let U be an (¢, A)-padded decomposition of a finite metric space X and let 1 < g < 0.
Then there is a 1-Lipschitz map f : X — {, such that

(i) vo e X, [[f(x)ll, < A,

(ii) Yo,y € X, d(z,y) € [A,28) = [|f(z) — f(W)], > se(z)d(z,y).

Proof. Fix P € Supp ¥, and let Cy,Cs,...,Cppy be the clusters of P. Let Uy, Us,,...,Uymr) be all
possible unions of the (C;) For 1 < j < 2™P) define fp; : X — R by

1<i<m(P)"

_Jmin{A,d(z, X\P(z))} ifzeU;
Jrs(w) = {O otherwise '

We have 0 < fp;(z) < Aforall z € X. Let z,y € X.
o If P(x) # P(y), then 0 < fp;(z) < d(z, X\P(z)) < d(x,y) and similarly for y.
It P(z) = P(y), z,y € Uj, then | fp;(x) = fr;(y)| < |d (2, X\P(x)) — d(y, X\P(2))| < d(z,y).

o If P(z) = P(y), z,y ¢ Uj, then fp;(z) = fp;(y) =

This shows that fp; is 1-Lipschitz.
Now define fp: X — @m(m by

fp(z) = (Tm(P)/q frs (x))lgmm(m .

Hence, for all z,

gm(P) /g
e (Zz fpj)) <A
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and for z,y € X,

om(P) 1/q
| fp(z) = fr)ll, = (Z 27| fp (@) — fP,j(?J)|q) <d(z,y),

so fp is 1-Lipschitz.
Finally, define f: X — (@Pesupp\p fgm(P)) 1 £g by
q

f(@) = (¥(P) fp(x))

Hence [|f(z)|, < A for all z, and f is 1-Lipschitz. Fix z,y € X such that d(z,y) € [A,2A). Let

PeSupp ¥ )

E={P € SuppV, d(z,X\P(z)) = e(x)A}.
Fix Pe E. lf x € U; Z y, then
[fp(x) = fpj(y)| = min{A, d (2, X\P(z))} > e(x)A.

Note that P(z) # P(y) because VC' € P, diam(C') < A < d(z,y). Therefore, for one quarter of all
possible values of j, we have z € U; Z# y. Hence,

1/q

A

1fr(e) — FrW)l, > ( S 2 | () fp,j(y)lq) S
xcU; 2y
It follows finally that
1/‘1 A
1160 = ), > (X WP ) = £etly) > S0
PeFE
A 1
> Zf/xq) i > 4f/(qx')lld(:c,y) > 1—68(:c)d(:c,y). O

Definition 3.8 (Relevant scales). Given a finite metric space X, we define
S(X) = {ﬁ €Z,3x,ye X, d(x,y) € [25,26“)}.
FElements of S(X) are called relevant scales. We denote R(X) = |S(X)|.

Example 3.9. If X is a finite connected graph with the graph distance, then R(X) < [log, | X]|].

Definition 3.10 (Scale-7 embedding). Given K,7 > 0, a map f : X — Y s called a scale-t
embedding with deficiency K if f is 1-Lipschitz and

for all z,y € X such that d(z,y) € [1,27).

Proposition 3.11. Given K > 0 and 1 < q¢ < oo, assume that for all ¢ € S(X), there exists
fo: X — £, a scale-2" embedding with deﬁczency K. Then

c(X) < K - R(X)Y4.
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Proof. Define f: X — (@zeS(X) Eq)q ={, by

f(z) = (ff(x))feS(X) :
Then, for all z # y in X,

1/q
1f (@) = fWll, = ( > er(ﬂf)—fe(y)Hg) < R(X)Yid(z, y).

1eS(X)

Moreover, there exists ¢ € S(X) such that d(x,y) € [25, 2”1>, SO

1 () = FWll, = I fele) = e, = Il(d(fv,y)-

Therefore c,(X) < dist(f) < K - R(X)Y4. O

Notation 3.12. Given functions a,b defined on a set S with values in Ry, we write a < b if
dC e Ry, Vs € S, a(s) < Cb(s).

Corollary 3.13. If for all ¢ € S(X) there is an (5, ZK) -padded decomposition of X with e(z) > %,
then, for all 1 < q < o0,
c(X) < K - R(X)Y4.

Remark 3.14. Corollary 3.13 actually yields
¢(X) < K - R(X)™{33

because c,(X) < co(X) by Corollary 1.19.

3.3 Existence of padded decompositions

Theorem 3.15. For all { € Z, there is an (5, 2‘]) -padded decomposition of X with

e(x) = 116 <1 + log (%))1.

Proof. Fix ¢ € Z and set A = 2. Fix an ordering < on X. Pick a pair (7,a) € &y X (Z? 5) uniformly
and independently at random. To this pair, there corresponds an element P € Px with clusters

Cy=Baa(y)\ U Baal?),

m(2)<m(y)

for y € X (where we throw away the empty clusters). This gives a random partition, so we have a

stochastic decomposition (formally, we are taking a pushforward of the product probability measure
on Gx X (i, %)) We now show that this decomposition is (e, A)-padded, where € is as in the
statement of the theorem. Note that

diam (Cy) < 2aA < A,

for all y € X.
Now fix z € X and let ¢ < £. Let B be the event that d (z, X\P(z)) < t. Our aim is to show
that P(B) < 5 for t = e(z)A. Note that

B ={Bi(z) £ P(x)} = [ {Bi(zx) £ Cy}.

yeX

1
2
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Let y € X such that B,(z) N C, # @; then By(z) N Baaly) # @, so d(z,y) SaA+t < 5§+ 2 <A,
so y € Ba(x). We denote by yi, ...,y the elements of Ba(z) in order of increasing dlstance to x.
Now let y € X such that d(z,y) < oA + ¢, with 7(y) minimal for <. Then, by minimality, B;(z) is

disjoint from Uy <x(y) C= = Un(z)<n(y) Baa(2).
This shows that, for the above ch01ce of y, Bi(z) C C, if and only if Bi(z) C B,a(y). Now if B
happens, then Bt(x) Z Buoa(y) for some y which can be taken as above, and hence

A A A
d A—t>——— .

Let a = ’BA/S(a:)‘, then Bass(x) = {v1,...,%.} with the above notations. So y = y for some
a < k < b. This proves that

b
Bg U Ek’a

k=a+1

where Ej, is the event that aA —t < d(x,yx) < oA +t with 7 (yx) minimal for <. Let

Then Ej, C {aA € I}, so

k a+1 k=a+1

If aA € I, then d(x,y;) < d(z,yr) < oA+t forall 1 < j < k. If in addition Ej occurs, we must
have 7 (yx) < 7 (y;) for j < k, so

P(B) < zb: P(Vy <k, m(ye) <7m(y;) | aA € I)P(aA € I})

k=a+1
b
= Z P(Vy <k, m(ye) <7 (y;)) P(aA | I})
k=a-+1
b1 8t 8t (b) 1
< lo < =
Pt k A A 2’
if t = e(x)A. O

Remark 3.16. Note that, in Theorem 3.15, e(x) 2, 10g1|X\’ so Corollary 3.13 yields

2(X) S (log [X]) y/ R(X).

3.4 Glueing Lemma and Bourgain’s Embedding Theorem
Notation 3.17. For x,y € X and { € Z, define

o) = { if By (@)] > | Bae(y)]

y  otherwise

Lemma 3.18. Assume that for all ¢ € Z, there is a 1-Lipschitz map hy : X — €, (with 1 < ¢ < 00)
such that [he(z)||, < 2% for all x € X. Then there exists H : X — {, such that

(i) Lip(H) 5 (log |X )"/,
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(ii) For all z,y € X and ¢ € Z such that d (z,y) € {23,2”1), we have

| By (e-s(2, 9))|
* | Bae-s (e-3(x,y))]

1/q
| () - H@), > (10 ) he(e) — he(w)ll,

Proof. Let p : R — R, be the piecewise affine function defined by pj(—cc,1/16) = Pj[16,400) = 0 and
pinsss) = 1. Note that Lip(p) < 16. Fix t € {0,1,...,[logyn]| — 1} where n = |X|. For z € X, let

R(x,t) = sup {R >0, |Bgr(z)| < Qt}.

The map = — R(z,t) is 1-Lipschitz: given z,y € X, if |Br(z)| < 2¢, then ‘BR d(z.) (y)‘ < 2, so that
R(y,t) > R — d(z,y). By taking the supremum over R, we have R(y,t) > R(x,t) — d(z,y), from
which it follows by symmetry that

|R(z,t) — R(y, t)| < d(z,y).

t
Ht:xEX»H<p<R<UZ’ )>hg(3f)> (@2) =/
2 ez \tez /,
This is well-defined: if z € X, then p( 0 if R(z,t) < 2% or R(w,t) = 24, Choose m € Z

such that 2™ < R(z,t) < 2™"!. Then p( ) ) =0if¢>=m+5o0r{<m—4. It follows that H(x)

has at most eight nonzero coordinates, so Ht(x) (Brez ly) -
Next, we show that H; is Lipschitz with Lip (H;) < 16 - 17. Indeed, for ¢ € Z,

Define

(5t (Bt <o (552) =0 (55wt
(P52 ) - o
<160 - 00 o)l + o) = 1o
< gjd(%y) 12+ d(z,y) = 17d(z, y).

Since both H;(x) and Hy(y) have at most eight nonzero coordinates, H; is (16 - 17)-Lipschitz. Now
define

[logy n]—1
t=0
q

It is clear that Lip(H) < (logn)"?, proving (i).
For (ii), fix x,y € X and choose ¢ € Z such that d(z,y) € [25, 2”1). Thus the inequality

[He(x) = Hi(y)ll, = lhe(z) = he(y)l, (%)
holds provided that p( ) ( A )) = 1, which holds if R(x,t), R(y,t) € {25’3, 2”3}. This will
follow if |Bge—s(x)| < 2° and | Byews ()] > 2%, and similarly for y. So () holds for all ¢ such that

"€ [|Bae-s(2)], | Byera(@)]) N [| Bae-s (y)] , [ Baews (y)]) -

Without loss of generality, we may assume that vy,_3(z,y) = = (i.e. |Bge—s(x)| = |Bye-s(y)|). Since
d(z,y) < 2+, we have Bye1(x) C Byess(y), so () holds if 2! € [|Bye-s(z)|, |Bye+1(7)]). Hence,

logy n]—1 1/q N
r|H<x>—H<y>Hq=( > |rHt<:c>—Ht<y>ug) (1M) hel@) = he(w), . O
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Lemma 3.19. Let 1 < g < 0o. Then there exists H : X — {, such that

(i) Lip(H) < (log|X])"",

ii) For allz,y € X and { € Z such that d(z,y) € |2¢,271), if log By (@) < 1, then
? [Be2 ()]
-2

|1H(z) — H(y)ll, = d(z,y).

Proof. Fixt € {1,2,...,[logyn]} where n = | X|. Let W be a random subset of X where each z € X
is placed in W independently at random with probability 27*. Let P; be the resulting probability
measure on the power set P(X). Hence

P,(W) = o—tW| (1 _ 2—t)”_\W\

for any W C X. Note that there is an isomorphism
L, (P(X),P) = 07

given by g — (Pt(W)l/qg(W))Wep(X). Define

Hy o€ X v— (d(@,W))yepix) € Lg (P(X),P) = o

Then for all z,y € X,

1/q
i) = El, = ( [ late.) = W) ar o)) < dto),

so H; is 1-Lipschitz.
Now define

[logy 7]
H:x€ X r— (Hi(2))i<1<fiog,n] € ( @ 62 ) ol
q

Then Lip(H) < (logn)"?, showing (i).
For (ii), fix z,y € X and ¢ € Z such that d(x,y) € {26,2“1) and log, i?elim;i
ot—2\T

s€{1,2,...,[logyn]} s.t. |Bye1(z)] € [2571,2°]. Note that |Bye—2(x)| € [2572,2%]. Consider the four
events:

< 1. Fix

E, = {W € P(X), d(z, W) < 2%} = (W € P(X), W N By-a2(z) # @},
F, ={W e P(X), dz, W) > 2"} = {W € P(X), W N Byes () = @},
E, = {W e P(X), d(y, W) < ‘;’2 } ={W e P(X), W Bsys(y) # 2},
F,=P(X)\E, = {W € P(X), W N Bsyez(y) = 2}

Since d(x,y) = 2¢, By1(x) N 3%2272(?}) = @, and hence any of E,, F, is independent from E,, F),.

1

k
Using the fact that << — 7) is increasing and converges to e~ ', we have
k

P, (E,) =1—(1-2 )'BQ“””)| - (1- ) Tl e s,
2

B, (F,) = (1- 2*8)'32“(95)| >(1-27)" > (1 ;) - le > 0.
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Therefore,

1H(x) = H(y)ll, = | Hs(z) = Hs ()],

B </P<x> |d(a, W) — d(y, W)|* dPs(W)>1/q

1/q
> ([, W)~ dtn P Q¥+ [ ) < dly 9] 0B ()
ExﬁFy EymFx
> (2099, (F,) + 209, (,)) " because P, (B, N F,) = P, (E,) P, (F,). etc.
> ottt > d(x,y). O

Theorem 3.20 (Glueing Lemma). Let 1 < g < 0o and K > 0. Assume that for all ¢ € Z, there is
a scale-2* embedding f,: X — €, of deficiency K and such that || fo(z)|| < 2° for allz € X. Then

c(X) S K14 (log | X|)"/7.

Proof. Apply Lemma 3.18 with hy = f; to get H which we will call F': X — ¢, such that Lip(F') <
(logn)"? (where n = |X|) and, for all z,y € X and ¢ € Z, if d(z,y) € {24,2”1), then

T 1/q
17 = Pl > (1o, (72 D420 ) - gl

> d(z,y)

From Theorem 3.15 and Lemma 3.7, we get for all £ € Z a 1-Lipschitz map g, : X — ¢, such that
lge()ll, < 2¢ and for all z,y € X, if d(z,y) € {24, 2“1), then

loe(e) — el 2 (1 +log (M)) Az ).

Apply Lemma 3.18 with h, = gy to get H which we call G satisfying (i) and (ii) of Lemma 3.18. Let
H be the function from Lemma 3.19. Define

P:zeXr— (Fz),G(x), H(z)) € (@l & Ly), = Ly

Clearly, Lip(®) < (logn)"/".
Fix z,y € X and ¢ € Z such that d(z,y) € [2‘], 2“1). Let A = [Byes1 (@) and assume for example

|Bye—3 ()]
that v,_3(x,y) = z. If A <1, then by Lemma 3.19, ||H(z) — H(y)||, Z d(z,y). If A > 1, then

ly 2

1
1F(z) = F(y)ll, > Al/qu(%y),

Al/a
1+ A

1G(z) = Gy)ll, = d(z,y).

Considering the cases A > K and A < K, we get a lower bound (Klfl/q)_l d(x,y), so dist(P) <
K114 (logn)'/4.

O

Corollary 3.21 (Bourgain’s Embedding Theorem). For any finite metric space X,
c2(X) S log | X].

Proof. By Theorem 3.15, there exists an (5,24)—padded decomposition of X for all ¢ € Z, with
e(x) 2 m. By Lemma 3.7, for all £ € Z, there exists a scale-2° embedding f, : X — /(5 with
deficiency K <log|X| and || fo(x)| < 2 for all z € X. Tt follows by Theorem 3.20 that

e(X) 5 (log] X )"~ (log | X])'/* = log | X] . a
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4 Lower bounds on distortion and Poincaré inequalities

4.1 John’s Lemma

Remark 4.1. Bourgain’s Embedding Theorem (Corollary 3.21) shows that co(X) < log | X| for any
finite metric space X. One might wonder if this is the best possible.

Definition 4.2 (Banach-Mazur distance). Given two normed spaces X,Y, we define the Banach-
Mazur distance between them by

dx,y)= wf || |77 € 11,00].

linear isomorphism
Proposition 4.3. Let X,Y, Z be normed spaces.
() d(X,Z) < d(X.Y)d(Y. 2).
(i) If X 2Y (isometric isomorphism), then d(X,Y) =1, but the converse is false in general.

Definition 4.4 (Banach-Mazur compactum). Let M, be the class of isometric isomorphism types
of n-dimensional normed spaces. On M, logd is a metric such that M,, is compact. It is called the
Banach-Mazur compactum.

Theorem 4.5 (John’s Lemma). If X is an n-dimensional normed space, then
d(X,05) < v/n.
Proof. We may assume that X is R” with some norm ||-||. Let
K=Bxy={zxeX, |z|| <1}.

Note that K is a convex and symmetric (i.e. —K = K) body (i.e. it is compact with nonempty
interior). Conversely, if K is a symmetric convex body, then K is the unit ball of a norm ||-|| on R"
defined by

|z|| =inf{t >0, z € tK}.

An ellipsoid is a subset £ C R" such that £ =T (ng), where T': R” — R" is a linear isomorphism.
Now note that
d (X, 03) < v/n <= 3E ellipsoid, n"?E C K C E.

Therefore, the theorem we want to prove is equivalent to: for every symmetric convex body K C R",
there is an ellipsoid £ C R"™ such that n2EC K CE.

Let K C R™ be a symmetric convex body. By compactness, there exists an ellipsoid E of
minimal volume such that K C E. By applying a linear isomorphism, we may assume without loss
of generality that £ = Byy. Now assume for contradiction that n~'2E ¢ K. Then there exists
z € 0K = Sx such that ||z||, < ﬁ By Hahn-Banach, there is a linear functional f : R” — R such

that f(z) =1 and ||f(z)] < 1 for all x € K. Consider
H={xeR" f(z)=1}> =z

K lies between H and —H. After applying a rotation, we may assume without loss of generality that

1
H:{xGR”,xlz}
c

for some ¢ > \/n (because H contains a point z with ||z||, < ﬁ) Given a > b > 0, consider the
ellipsoid

E.p = {x eR", a’zi+ > bz} < 1} )
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i.e. the image of £ = By under the linear map with matrix diag (a=*,07%,...,b71). Tt follows that

vol (E,p) = vol (E).

abn—l
For x € K C E, we have

n 2 bQ

a?
a’x} + 3 07 < (0 = 0) 2} + b |3 <

= + b

We claim that there exist @ > b > 0 such that “26;2[’2 +b% < 1and ab® ! > 1. If the claim is true,
then vol (E, ;) < vol (E) and K C E,, contradicting the minimality of vol(E).

To prove the claim, fix a € (0,¢) and set b = Cj{ff. Then an;?bQ + 0% =1;let f(a) = ab" ! =
a (‘32_‘12)%. We have f(1) =1 and

c2—1
2 2 2l 1 2 2 2 a3
oy [ —a 2 n— —2a (c"—a 2
f(a)_<c2—1> o 02—1<02—1>
n—3
(e =a*\ T (—a® (n—1)a®
S\e2—1 ?—1 ?—1
n—3

22\ T 2 na?

- ( -1 ) -1
Since ¢ > n, f'(1) > 0, so there exists @ > 1 such that f(a) > f(1) = 1. This concludes the
proof. O

Remark 4.6. (i) If X,Y are n-dimensional normed spaces, then d(X,Y) < n. In fact, Gluskin
proved that diam M,, 2 n. Therefore, according to John’s Lemma, €3 can be thought of as the
centre of M,,.

(ii) For a finite metric space X, the analogue of dimension is log|X|. By analogy with John’s
Lemma, one might hope that co(X) < (/log|X].

4.2 Poincaré inequalities

Definition 4.7 (Poincaré inequality). Let X, Y be metric spaces. A Poincaré inequality for functions
f: X =Y is an inequality of the form

> aw¥ (d(f(w), f(v) = > bV (d(f(u), f(v))), (%)

u,vEX u,veX

where a,b are finitely-supported functions X x X — Ry and ¥ is an increasing function Ry — R,
The Poincaré ratio is defined by

Eu,vGX bUU‘IJ (d(u> U))
Zu,vEX auv\Il (d<u7 1))) 7

Pa,b,\ll <X> =

whenever this makes sense.

Proposition 4.8. Let W(t) = t?, with 1 < p < co. Assume that X,Y are metric spaces satisfying
the Poincaré inequality (x) for some a,b, for all maps f : X — Y. Then

ey (X) 2 (Pagpr(X)'7.

28



Proof. Let f: X — Y be a bilipschitz embedding. Then

1> Zu,vEX buv (d (f(u)a f(v)))p > 1 Zu,vEX buv (d<u7 U))p _ Pa7b,tp (X)
- Zu,UEX Ay (d (f(u)7 f(v))p) - dlSt(f)p ZU,UEX Ay (d(uv U))p (dlSt(f))p .
Hence dist(f) = (Papw (X ))1/ P Taking the infimum over all f gives the result. ]

Example 4.9 (Short Diagonal Lemma). In (o,
o — sl + |72 — wally < flar — w2l + llos — @35 + [l2s — 23 + [lza — 2[5,
forall xq,...,x4 € ly. This is a Poincaré inequality for functions Cy — 5. By Proposition 4.8,
e (Cy) = V2.
In fact, ¢y (Cy) = V/2.

4.3 Hahn-Banach Theorem

Definition 4.10 (Positive homogeneous and subadditive functionals). Let X be a real vector space.
A functional p : X — R is said to be

(i) Positive homogeneous if p (tx) = tp(x) for allt >0 and z € X,
(ii) Subadditive if p(x +y) < p(z) + p(y) for all z,y € X.
For instance, a seminorm on X 1is both positive homogeneous and subadditive.

Theorem 4.11 (Hahn-Banach). Let X be a real vector space and p : X — R be a positive homo-
geneous subadditive functional. IfY is a subspace of X and g : Y — R is a linear map such that
g < ppy , then there exists a linear map f : X — R such that fiy = g and f < p.

Proof. The proof is similar to that of Lemma 2.13.

Consider the set P of pairs (Z, h), where Z is a subspace of X containing Y, h : Z — R is linear,
hy =g and h < pyz. This is a poset with (Z1, h1) < (%2, he) if and only if Z; C Zy and hy|z, = hy.
Note that (Y, g) € P, so P # &. Moreover, given a nonempty chain C = {(Z;, h;), i € I} C P, set
Z = Uier Z; and define h: Z — R by hjz, = h; for all i € I. Hence (Z, h) is an upper bound for C.

By Zorn’s Lemma, P has a maximal element (W, k). It suffices to show that W = X. Assume
not and take xo € X\W; let W, = W @ Ray. Given a € R (to be chosen later), define ky : W, — R
by

ki (w4 Axo) = k(w) + A

for w € W and A € R. If we can choose « in such a way that k; < pw,, then we will have
(W, k) < (Wi, ky), which will contradict the maximality of (W, k). Note that k is linear and p is
positive homogeneous, so it suffices to find o € R such that, for all w € W,

k1 (w+ zo) < p(w+ z0) and ki (w—z9) < p(w— x0) .

In other words, we need k(w) + a < p(w+ xp) and k(w) — a < p(w —xg) for all w € W, or
equivalently,
k(2) —p(z —m) < a < —k(w) +p(w+x0),

for all w, z € W. Therefore, it suffices to show that

sup (k(z) —p (2 = z0)) < inf (=k(w) +p (w + 20)) .

inf
zeW weW
But this is true because, for w,z € W,

k(z) + k(w) =k(z+w) <plz+w)=p(z—x0+w+x0) <p(z—x0) +p(w+z0) . O

29



Corollary 4.12 (Hahn-Banach Extension Theorem). Let X be a real normed space.
(i) IfY is a subspace of X and g € Y™, then there exists f € X* such that fiy = g and ||f]| = ||g|-
(ii) Given xy € X\{0}, there exists f € Sx+ such that f (x¢) = ||zo]|.

Proof. (i) Define p(x) = ||g|| - [|z]|]. Then p is a seminorm (hence it is positive homogeneous and
subadditive), and we have ¢g(y) < p(y) for all y € Y. By Theorem 4.11, there exists f : X — R linear
such that fiy = g and f(z) < ||g] - ||z||. Applying the last inequality to —z yields —f(z) < ||g]| - ||=]],
from which it follows that |f(z)| < ||g] - |||, i.e. f € X*and ||f]| <|g]. But fiyy = g,so0 ||f] =gl

(ii) Let Y = Rz and define g : Y — R by g (Azg) = A ||xo|| for A € R. Then g € Y* and ||g|| = 1,
so by (i), there exists f € Sx- such that fjy = g; in particular f (z) = ||zo||. O

Remark 4.13. If Z is a complex vector space, let Zg be Z viewed as a real vector space. Then for
a complex normed space, the map (X*)g — (Xg)" given by f — R(f) is an isometric embedding.
This allows one to extend the Hahn-Banach Theorem to the complex case.

4.4 Hahn-Banach Separation Theorem

Definition 4.14 (Minkowski functional). Given a normed space X and a convez subset C' C X with
0 € C, the Minkowski functional of C' is

pe:x € X —inf{t >0, z €tC} e R.

This is well-defined due to the fact that 0 € C.
Example 4.15. If C' = Bx, then uc = ||-]|.

Lemma 4.16. Let X be a normed space and C C X be a convexr subset with 0 € C'. Then the
Minkowski functional uc is positive homogeneous and subadditive. Moreover,

{reX, po(z) <1} CCC{r e X, pc(r) <1},
where the first inclusion is an equality if C' is open, and the second one is an equality if C is closed.

Proof. Positive homogeneity. Let t > 0 and z € X. If t = 0, then 0 € sC for all s > 0, so uc(0) = 0.
If £ > 0, then for any s > 0, we have tz € sC if and only if x € $C, so pc(tx) = tuc(z).

Subadditivity. Fix x,y € X and let s > pc(z) and t > pc(y). By definition, there exists
pe(x) < s < s such that x € s'C. Thus

/ /
xzs-x,+<1—s>-()ec
S

S S S

since C' is convex, so x € sC. Similarly, y € tC'. Therefore,

r+y s T t

_ : Ve
s+t s+t s

s—l—t.t

This shows that puc(z +y) < s+ t. By taking the infimum over s and ¢, we obtain pc(z + y) <

pe () + po(y).

Inclusions. 1If uc(x) < 1, then by the above, z € C, so {z, pc(z) <1} C C. If z € C, then
pe(x) < 1 by definition, so C' C {z, uc(z) < 1}.

FEquality case when C' is open. If x € C, then since (1 + %) T and C'is open, there exists
n > 1 such that (1—1—%)9060, soz € 25C and po(r) < 5 < 1.

Equality case when C' is closed. 1f pc(z) < 1, then pc (HLH:C) S o <lforaln =1, so0

qx e (C foralln > 1. Since -~ —— x and C is closed, x € C. O
n+1 n+1 n—00
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Remark 4.17. In Lemma 4.16, if C is symmetric, then uc is in fact a seminorm. If in addition C
is bounded, then uc is a norm. We used this in the proof of John’s Lemma (Theorem 4.5).

Theorem 4.18. Let X be a real normed space. Let C be an open convex subset of X containing 0
and let xg € X\C. Then there exists f € X* such that f(x) < f (xo) for allz € C (note in particular

that f #0).

Proof. Let Y = Rxy and define g : Y — R by g (Azg) = A (zo). Then g is linear, and we have
VA 20,9 (Aro) = Auc (20) = pe (Azo),
VA <0, 9(Amo) = Apc (z0) <0 < pe (Axo),

80 g < fiopy - But pe s positive homogeneous and subadditive by Lemma 4.16, so Theorem 4.11
implies that there exists f : X — R linear such that fjy =g and f < pc.
Since zo € C, pe (xg) = 1. Therefore, as C' is open, we have

Ve € C, f(z) < polr) <1< pe(wo) = f(20) -

Furthermore, 0 € C' = C, so there exists § > 0 such that §Bx C C, hence |f(z)| < 1 on 6By, so
feXn [

Corollary 4.19 (Hahn-Banach Separation Theorem). Let A, B be nonempty disjoint convex sets in
a normed space X.

(i) If A is open, then there exist f € X* and a € R such that, for alla € A and b € B,
fla) < a < f(b).

(ii) If A is compact and B is closed, then there exists f € X* and o € R such that

sup f < a < inf f.
A B

In both cases, the hyperplane {x € X, f(x) = a} separates A and B.
Proof. (i) Fix ap € A and by € B, set kg = —ag + by. Let
C=A-—B+xy={(a—0b)+mzp, a€ A, be B}.
Then C'is convex and open (because A is open), 0 € C' and z¢ € C' (since AN B = &). By Theorem

4.18, there exists f € X* such that, for all x € C, f(z) < f(xo). Hence, for all a € A and for all
be B,

fla=b+x0) < f(z0),
or in other words f(a) < f(b). Set a = infg f. Certainly f(b) > « for all b € B. Also, f(a) < « for

all a € A. Since f # 0, we can fix u € X such that f(u) > 0. Now for a € A, since A is open, there
exists n > 1 such that a + %u € A; it follows that

1 1
f@) < f@)+ fw = (a+ u) <o
(ii) For a € A, d(a, B) > 0 since B is closed and a ¢ B. Since A is compact, we set
d = inf d(a,B) > 0.
acA

Then A’ = {z € X, d(z, A) < 0} is an open convex set with A’'N B = @. By (i), there exists f € X*
and € R such that

fa) <B<f)
for all @ € A" and b € B. As A is compact, sup, f < [ < infp f, so it suffices to choose sup, f <
a < . O
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4.5 Optimality of Poincaré inequalities

Theorem 4.20. Let 1 < p < oo and let X be a finite metric space. Then
ep(X) = sup (Papn (X))'7,

where the supremum is taken over all nonnegative nontrivial X x X matrices a,b for which the

Poincaré inequality
> aw [f(w) = FOI = > bu lf(w) = f)I5, ()

u,veX u,veX

holds for all functions f : X — L,.

Proof. The inequality (=) follows from Proposition 4.8. It remains to prove ().

Note that, taking a,, = by, = 1 for all u,v € X, the inequality (x) holds trivially, and P, p»(X) =
1, so if ¢,(X) = 1, then we are done.

Now assume that 1 < ¢ < ¢,(X). Write X = {z1,...,z,}. Consider the set

B={(1F @) = @) s £ X > Lo} CRY,

1<i<j<n

with N = (g) From the proof of Theorem 2.24, we know that B is a cone (and hence B is convex),
and B # @ (for instance, 0 € B). Let

A= {<9ij)1<i<j<n S RN, dr >0, Vi,j, r- d(l’i,l'j)p < Hij <rc - d(.%l,x])}

Then A is open, convex, and nonempty since ¢ > 1. Moreover, AN B = @ since ¢ < ¢,(X). By the
Hahn-Banach Separation Theorem (Corollary 4.19), there exists a linear map A : RY — R and an
a € R such that

A(0) < a < Ap)

for all € A and ¢ € B. Note that 0 € B, so a < 0. Moreover, by continuity of A\, A(6) < « for all

A But 0 A, so0< a; hence a = 0. Now we can write \ = (Nij)1<icjcns Where
1<i<j<n

Set a;; = max {\;;,0} and b;; = max {—\;;,0}, so that \;; = a;; — b;;. For f: X — L,, we have

> Ay llf (@) = f (@)l =0,

1<i<j<n

or in other words,

Yooagllf ) = f@lp = D by llf () = f (@)l

1<i<y<n 1<i<j<n
This is a Poincaré inequality. Define

0. — cP - d(l’i,l'j)p if )\ij 2 0
v d(fﬂi,x]’)p if >\'L’j <0 .

Then 0 = (GU)KKKH S A, SO
0 = )\(6) = Z a,»jcp~d(x,-,xj)p— Z bij 'd(C(]Z‘,ZL'j>p,
1<i<j<n 1<i<g<n
which proves that P, (X) > . O
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4.6 Discrete Fourier analysis on the Hamming cube

Notation 4.21. Recall that the Hamming cube is the graph H, = {0,1}", where v = (2;),.,, and
Y = (Yi)1<i<p, are joined by an edge if and only if [{i € {1,...,n}, x; # y;}| = 1. This makes H, a
metric space with the graph distance d:

d(%y) = Zm —?Ji|‘
i=1

Hence, H,, is isometrically a subset of (7.
H,, is also a probability space with the uniform distribution p:

u({z)) =27

Thinking of {0,1} as the field Fy, H, is the n-dimensional vector space F4 over Fy; in particular,
H,, is an abelian group. Let (e;),,, be the standard basis of H, = Fy.

Definition 4.22 (Rademacher functions and Walsh functions). For 1 < j < n, define
ri:x € H, — (—1)% € R.

r; s the j-th Rademacher function. Note that ry,...,r, are independent and identically distributed
random variables on (H,, i) with {+1}-valued Bernoulli distributions with parameter ;.
For AC{1,...,n}, we define wy : H, — R by

wp = H’f’j.

jEA

-----

The functions (wA)Ag{1 ny Q€ called the Walsh functions. These are in fact the characters of H,,

i.e. the homomorphisms H, — S'.
Lemma 4.23. The Walsh functions form an orthonormal basis of Lo (H,, 1)

Proof. Since TJQ. =1 for all j, we have, for A, B C{1,...,n},

wawg = [[rj- [[rj= [I r=wans.

jEA  jEB JEAAB

Hence,

(wa,wa) :/ wawy dp :/ wy du = 1.
Hy, Hy

Likewise, if A # B, using the independence of the (r;)

1<isn?
(wa,wp) :/ wanrg dp= ] / r; dp=0.
Hn jeAnB I Hn
=0
This proves the result since dim Ly (H,,, 1) = 2™. O

Definition 4.24 (Fourier coefficients). Given a function f : H, — R, define
fA = (f,wa) = /H fwa du € R.

The real numbers ( fA) are called the Fourier coefficients of f.

AC{1,...,n}
More generally, given a Banach space X and a function f : H, — X, we can define fa =
an Jwa dp.
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Lemma 4.25. (i) Let f € Ly (Hp,p). Then for all x € H,,

f@)= Y fawa().

AC{1,...,n}

Moreover, we have Parseval’s identity:

[, 1f@F dut@) = 3

(ii) Let f: H, — X, where X is a Banach space. Then for all x € H,,

flz) = Z J?AwA(x)'

AC{1,...,n}

If in addition X is a Hilbert space, then we have Parseval’s identity:

[, I@I? dutx) = 3

Ag{l 77777 ’I’L}

2

A

fa

Proof. (i) Follows from Lemma 4.23.
(ii) Let x € H,, be fixed. Given ¢ € X* we have

o —

o (Fa) = [, o U@)wale) duw) = (po D),

for all A C {1,...,n}. It follows by (i) that

o(f@)= 3 <@>AwA<x>=so( S waA<x>).

AC{L,...in} AC{L,...n}

Since this is true for all ¢ € X, the Hahn-Banach Theorem implies that f(x) = X aci,. Fawa(z).

If X is a Hilbert space, then we may assume without loss of generality that dim X is finite (because
H, is finite). Fix an orthonormal basis vy, ..., v, of X. Then, for 1 < j <k, let f;(z) = (f(x),v;).
The above implies that

(fi)a = <fA7Uj> :
Using Parseval’s identity in the Hilbert space X and in Ly (H,, 1) (by (i)), we have

[, M@ dute) = [ Zm -y > (@S

Jj=1 AC{1,...,

2

A

Ja O

- 3 S~ ¥

AC{L,.n} j=1 AC{L,...n}

Definition 4.26 (Difference operators). Let X be a Banach space. For each 1 < j < n, we define a
difference operator 9; as follows: for all f : H,, — X, we set

8jf:$€Hn»—>;(f(x—l—ej)—f(x))eX.
Lemma 4.27. (i) For1<j<nand AC{l,...,n},

djwalr) = =1a(j)wa(z).
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(ii) Given a Banach space X and f : H, — X,

— ~

(8jf)A = —1a(j)fa.

(iii) Given a Hilbert space X and f: H, - X,

S [ ot duy = YAl

j=17Hn AC{1,...,n}

2

A

fa

Proof. (i) Note that the Rademacher functions satisfy

—ri(x) ifj=1
i(T+e5) = x
Hence,

W4 x+6] an—i—ej
i€A

—wa(z) ifjeA
Fua(e) i EA

Hence 0jwa(x) = —14(j)wa(z).
(ii) We have

0,)4 = / (0,1) ()wa(w) dp()
-3 s T e ) dut@) — 5 [ f@uaa) dut)
-1 / Pwale+e) dpte) = 5 [ F@pate) du
= [, J@) @w2) (2) du(a)
— L)

(iii) Using (ii) and Lemma 4.25, we have

S [0 aw =% 5 [@n)- ¥ 3

Jj=1 AC{1,..., AC{1,..,n} =1

> AL ©
AC{1,..,n}

0,1 4

4.7 Poincaré inequality for L,-valued functions on H,

Theorem 4.28. Lete=e;+---+e, € H,. Then, for all f: H, — Lo, we have
[ i+ e) = f@)? dute 42/ 10,4 @) duz).

Proof. For A C {1,...,n}, note that wu(z + ¢) = (=1)*w,(z). Hence, using Lemmas 4.25 and
427,

L of@+e) =@ du@ = [ | fawatere) = ¥ fawa@)| du@)
n " |AC{1,...,n} AC{1,...,n}
2
=4 Fawa(z
/H |A|Zodde 4() |A| odd
<4 X Ak —42/ 10;F (@) ]> dpa(). 0
Ag{l .....
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Corollary 4.29. ¢, (H,) = v/n.
Proof. The obvious embedding H,, C ¢4 yields ¢3 (H,) < y/n. Now Theorem 4.28 gives a Poincaré

inequality for functions H,, — Ls, so Proposition 4.8 yields a lower bound on C5 (H,,) obtained from
the Poincaré ratio:

2 2

TAYT [y, (a4 e ) du(z)  n

Remark 4.30. Since |H,| = 2", we have ¢y (H,) = y/log|H,|. Compare with the upper bound
¢ (X) <log|X]| in Bourgain’s Embedding Theorem (Theorem 3.21).

Remark 4.31. From now on, we think of H, as the n-dimensional vector space Fy over Fy.

Theorem 4.32. For every f : Fy — Lo, we have

[ @) = F@IF due) dnty) <2 (ggg A) > [ 10,5 dte).

fa#0

Proof. Without loss of generality, after replacing f with f — fgwg, we may assume that fg =0
(recall that wg(z) = 1 for all ). Then, using Parseval’s identity,

Lo @) = F@)IP dpe) dpy) = /F ey @I+ 17 =202, £0)) da(e) dut)

HfA!—2/ < L ! >du<x>>du<y>

AC{l ,,,,,
fz
=2 3 |
AC{1,...,n}
Now by Lemma 4.27,
) - A Al
Z N @I du(e) AC{l ..... ) Al-f4] = Jrél{%! ) Ac§,7n}“fA”

4.8 Linear codes

Definition 4.33 (Linear codes). A linear code of F} is a subspace C' of Fy. We let

d(C) = xEHCI’E{IO} d(xz,0) =d(0,C\{0}).

For z,y € Fy, let
y) = szyz
i=1

This defines a symmetric bilinear form on FY; however, (x,x) = 0 does not imply x = 0. For a
subset S C I3, let
={reF}, Vse S, (x,s) =0}.

Lemma 4.34. If C C FY is a linear code, then
dim C + dim C+ =
Moreover, C++ = C.
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Proof. Let m = dim C' and let vy, ..., v, be a basis of C. Define 0 : F} — FI* by

0(z) = (<xﬁvi>)1<i<m'

Hence, Ker § = C*, so n = dim C* + 1k §. Therefore, it suffices to prove that @ is onto.

For 1 < j < m, let f; : F — Fy be a linear map such that f; (v;) = 6;;. Set y; = f; (e;) and
y=(y1,...,Yn) € F5. Then f;(x) =Xz f; (e;) = (x,y), so (y) = (f; (Ui))lgign‘ This is the j-th
standard basis vector of FJ*, so @ is onto, proving that rk = dim C and therefore n = dim C'+dim C*.

By definition, C' C C*++, and

dimC* = n —dimC*+ = dim C,
so C' = C+t. O

Lemma 4.35. There exists 0 € (O, %) and N € N such that, for alln > N,

(|on] +1) (Lgﬂ) < 28,

Proof. First choose § € (0, %) such that 5(2+10g %) < 10%2. Then choose N € N such that
lon] > %571 for all n > N.
Now let n > N and set m = |[én]. If m = 0, it is clear that (m + 1) ( ) =1 < 28, Assume

that m > 1. Then "
<n)_n(n—1)---(n—m+1) <nm

m! ol

and

log (m!) = logj 2/1 logt dt = [tlogt —t]]" = mlogm —m+1 > mlogm — m,
j=1

so m! > (%)m and (Z) < (%)m It follows that

log ((m~|—1) (n)) glog(m+1)+log(<en) ) < m |2+ log L
m —_—— m ~ m
~—

<m

2
<5n(2+10g5)<glog2. O]

Lemma 4.36. There exists « > 0 such that for all n > 1, there is a linear code C' C % with
dimC > § and d(C) > an.

Proof. Choose § € (O, %) and N € N as in Lemma 4.35. If 1 < n < N, choose any linear code C'
with dim C' > 7; then
n
dC)>1> —.
€212 1
Now assume that n > N. We claim that there is a linear code C' in Fj with dimC > 7 and
d(C) > on; hence, setting o = min {%, 5} will do.

To prove the claim, we show by induction on £ < [ﬂ that there is a linear code C} C F7

with dimCy = k and d(Cy) > on; taking C = C[ﬂ will complete the proof. This is true for

k = 1 (because F} has a point at a distance at least dn from 0). Assume that Ci,...,Cy have
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been constructed, with k& < 7. We seck a suitable # € F3\Cj such that d(Cyi1) > dn, where
Cri1 = Cr+Fox = C, U (Cy + x). We estimate the number of unsuitable vectors z: for v € Cy, then

[én]—1
{z € F3, d(z +v,0) < on}| = [{z € F}, d(z,0) < on}| = > (Z) < (m+1) (;),

=0

where m = [én] < §. It follows that

{z € Fy, Jv € Cy, d(z +v,0) < on}| = | |J {z €Fy, d(x +v,0) < on} < 2"

veCy

(m+1)<gl>.

If 2%(m + 1)(22 < 2" — 2k then |{zx € F}, Yv € C}, d(z +v,0) > dn}| > 2% = |Cy| and therefore
there is a suitable x. In other words, we need

(m+1) (;) <onk 1,

But since k < 2, we have 2"7% — 1 > 23/% — 1 > 27/8 50 we are done by choice of § and N. O

4.9 Poincaré inequality for L,-valued functions on F}/C*

Notation 4.37. In this section, C C F} is an arbitrary linear code. We denote by q : F3 — F3/C+
the quotient map, and we let ji be the image measure induced by p and q:

A(E) = p (g (B)).
Moreover, we denote by p the quotient metric on Ty /C*:

p (qz, qy) :d(:c—i-CL,y%—Cl) :d<x—y,CL) = min d (z — y,v) .

veCt

Lemma 4.38. For every h : F3/C+ — Ly and for every @ C A C {1,...,n} with |A| < d(C), we
have (hoq), = 0.

Proof. Let f = hogq. Set v =3 ;c4e; # 0. We have d(v,0) = |A] < d(C),sov & C = C*+ ie. there
exists w € C* such that (v, w) = 1. Now

fa= [, f@heae) dute) = [ fGo+whwate+ w) dutz)
—/f T rstow) dta) = [ f@) TLE™r0) duto)

= an(x)(_m v (a) dp(x) = —fa,

sofA:O. [

Theorem 4.39. For every h : Fy/Ct — Ly, we have

/ng/Cixng/Ci 17 (w) = h(v)||; dpp(u) da(v) i/w/m 10;h(u)|, dji(w), (%)

where O;h(u) = 5 (h (u+ qe;) — h(u)) for u € Fy/C*.
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Proof. Let f = hogq. Then (x) is equivalent to

L 190) = @)l ) dpty) Z/ 10;£ @), du(x).

The proof of Proposition 1.31 implies the existence of a map T : L; — Lo such that
2
la =0, = [Ta =T .

Therefore, by Theorem 4.32 and Lemma 4.38

/anw 1f () = F@W)ly dp(z) dply) = / HTO f(x) =T o f(y)ll; du(w) duly)

-1

<2{ min 4| Y [ 10TF@I} dua)
Jj=1""2

A#o
(Tf)A#O

TZ/ 10,7 £ ()2 dyuz)
= 30 3 L 15l ),

because |9,Tf(2)|l; = 1T (x +e;) = Tf (@)l = I/ (z +¢5) = f(@)|l = 318, ()]}, a

4.10 Optimality of Bourgain’s Embedding Theorem
Lemma 4.40. There exists 3 > 0 such that for alln > 1, if dimC > %, then

n 1
n{y € Fy, plgr,qy) = fn}) = 3
for all x € Fy, where p is the induced metric on Fy/C*.

Proof. Let 6 € (O, %) and N € N be as in Lemma 4.35. Without loss of generality, we may assume
that N > 8 and = 0. Then for 1 < n < N, we have

n omn ‘CL‘ on _ 2n7dimC on _ gn—1 1
n > — e n L = = > - —.

Now assume that n > N. For v € C*, note that

wem dwn << S (1) <omen(l),

=0

where m = |on]. It follows that

Hy € F3, p(qy,0) < on}| = Hy ey, Jv e CH, d(y,v) < 5n}’
< ’C’l’(m+1) (n)
m

< 23n/42n/8 27n/8 2"

2 Y

because n > N > 8. Hence, f = min {5, N} works. n

39



Theorem 4.41. There exists n > 0 and a sequence (X,),., of finite metric spaces such that
| X0 —— and, for alln > 1,

Proof. By Lemma 4.36, for every n > 1, there is a linear code C' in F§ with dim C' > 7 and d(C') > an.
Let X,, = F3/C*, with the quotient metric p. We have

|X ‘ — on— dim C+ _ 2d1mC’ > 2n/4 = 0.
By Proposition 4.8, a lower bound on Cy (X,,) is given by the Poincaré ratio corresponding to the
inequality in Theorem 4.39. Hence,

e (Xp) > (/anxnp(u,v) dfi(u) dfiv ) ( 1) Z pu—f-2qe],) dﬁ(u))

= (/IFng(qx,qy) dp(z) duly ) ( 40 Z/ q(x+ej), )dﬂ(ﬂf))-

It is clear that the denominator is at most

T[(ZC) < % = L. Moreover, Lemma 4.40 implies that,
for each = € F3,

2an 2

/ p(qz,qy) du(y) > in
o

2

so the numerator is at least %, from which it follows that

2
62n~1a:a6n>aﬁlog2\)(n|. O
Remark 4.42. Recall that co(X) = ¢1(X) for any finite metric space (c.f. Definition 3.1). Therefore,
Theorem 4.41 implies that the upper bound in Bourgain’s Embedding Theorem (Theorem 3.21) is the
best possible up to a constant.

(&1 (Xn) >

5 Dimension reduction

5.1 Preliminary results on Gaussian random variables

Proposition 5.1. (i) If Z ~ N(0,1), then Z has probability density function ﬁe‘ﬁ/z.

(i) If Z1,...,Z, are independent and identically distributed random variables with law N(0,1),
and x € 05 with ||x||, =1, then 37, x;Z; ~ N(0,1).
Lemma 5.2. Let X be a random variable with E(X) = 0. Assume that for some C' > 0 and uy > 0,
we have E (e“X) < eCu? for all 0 < u < ug. Then
P(X >t) <eic
for 0 <t < 2Cuy.
Proof. Note that, if 0 < u < uo,
P (X > t) —P (euX > 6ut) < e—utE (euX) < e—ut-&-CuZ‘

Now if 0 <t < 2Cug, apply the above inequality with u = % to obtain

2

P(X >t)<e” 20+4C—e o, O
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Lemma 5.3. Assume that Z ~ N(0,1). Then there are absolute constants C > 0 and ug > 0 such

that
E (eu(Z2—l)> < O and B (eu(l—Z2)> < v
for 0 < u < ug.

Proof. We have

2 1 2 2 1 1 2
E( u(le )) _ / u(lfx ) —z°/2 dr = ¥ / —5(2utl)z d
‘ Var T A= e !

e 1 v e
_ . S dy = -
ULl on /]Re Y= Juxi

= exp (u — ;log (2u + 1)> = exp (u2 + O (u3)) ,

and a similar computation shows that E (e“<22_1)> < exp (u? + O (u?)). O

5.2 Johnson-Lindenstrauss Lemma

Remark 5.4. We want to embed n-elements subsets of Ly into (5 with low distortion. To do this, we
will take a random linear map T : (5 — (5 and show that, for each x € €3, we have

(=) [lzlly < [T=lly < (1+e) [l
with high probability. It will follow that, given x4,...,x, € {3, we have
(=) [Jwi — jll, < Tz — Tagll, < (L+e) || — 4,
for all i, j with positive probability. In particular, there will be a suitable map {xy, ..., x,} — (5.

Lemma 5.5 (Random Projection). Let k,n € N and € € (0,1). Define a linear map T : €3 — (%
by the k X n matrix (ﬁZ,) 1<i<k» where the (Zij)1<i<k are independent and identically distributed

1<j<n

EYAS

random variables with Z;; ~ N(0,1) for alli,j. Then there exists a constant ¢ > 0 (independent of
k,n,e) such that, for all x € (%,

P((1—e)llzll, < [Tzll, < (1 +e) flzlly) > 1 — 27

Proof. Fix x € £3. We may assume without loss of generality that ||z||, = 1. Then

(T'z), = \}E;xﬂg
for 1 <o < k. Let Z; = 30 x;Z;; then Zy,..., Z, are independent and identically distributed
random variables with law N (0,1). Therefore,

k 1.k
E(ITzll;) = Y E(|(To),f) = £ Y E(2) = 1

i=1 i=1

Let W = ﬁ S% (Z2 —1). Then E(W) = 0 (and in fact Var(W) = 1). Fix C,ug as given by Lemma
5.3. Without loss of generality, we may assume that 2Cuy > 1. Hence, if 0 < u < Vkuy,
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and similarly E (e*“W) < eCv” if <u< \/Euo. Therefore, by Lemma 5.2,

+2

t2
P(W >t)<e 10 and  P(W < —t)<eic
for 0 <t < 2Cuy VEk. Hence,
——

>1

P(l—e< [Tz, <14¢) = P«mwf<mw@<u+aﬁ

1— ZZK )

>1—26—%c. O

Theorem 5.6 (Johnson-Lindenstrauss). There exists a constant C > 0 such that, for all k,n € N
and ¢ € (0,1), if k = Ce2logn, then any n-element subset of £y embeds into (5 with distortion at

most %
—€

Proof. Choose C' > 0 sufficiently large so that, if k,n € N and ¢ € (0, 1) satisfy k > Ce~2logn, then

2 1

1 -2 >1— 5

where c is the constant of Lemma 5.5. Clearly, C' depends only on c¢. Now let T : % — (% be as in
Lemma 5.5. Then, for each x € (3,

1
P(A—e)llzlly < Telly < (1 +e) flzlly) 21— 5.
Hence, given x4, ..., z, € {5, we may assume without loss of generality that z,...,x, € ¢4, so that

n\ 1
P( N a—@wa—%m<Hﬂm—ﬂmb<u+QWm—%m)>1—<Qn2>a

1<i,5<n

1+s

so there is a linear map 7" that has {==-distortion on {z1,...,2,}. O

5.3 Diamond graphs

Remark 5.7. We aim to prove that dimension reduction as in the Johnson-Lindenstrauss Lemma
does not work in ;.

Definition 5.8 (Diamond graphs). The diamond graphs (D,),., are defined as follows:
o Dy consists of two vertices joined by an edge.

e D, is obtained from D, by replacing every edge xy in D, with a diamond xvyu, where u,v
are new vertices.

We write E,, = E (D,,) and V,, =V (D,,). Hence, for every n >0,

|E,| = 4",

Vol =2+ 2|Ey| + 2|Ey| + -+ + 2| Ep|
2
= (4" +92).
3( +2)
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Observe that |V,| < 4™ for alln >
We write d,, = dp, . For every n > m > 0 and for every x,y € D,,, we have

dp(z,y) = 2"""dy (2, y).

We also define sets (An),~, of non-edges: for n = 1, D, consists of copies of Dy of the form
zuyv, where xy € E,_1, u,v € V,\V,_1. Let A, consists of all such pairs uv.
We label the vertices as follows:

T D, 7/ T

We shall also write D,, (¢r) for D,,. Hence, D, 1(¢r) consists of four copies of D,: D, (t{), D, (tr),
D,, (b¢) and D, (br). If e, f are two of the edges t¢, tr,bl, br, then

V (Dn(e)) NV (Dn(f)) =N f.
Note that d,(¢,7) = 2" forn >0 and d,(t,b) = 2" for n > 1. Moreover, for x € D,,
d,(l,z) + d,(z,7) = 2".

Lemma 5.9. Let G be a connected graph and let f : G — X be a map to a metric space satisfying
dx (f(u), f(v)) < C for alluwv € E(G). Then f is C-Lipschitz.

Proof. Let a,b € V(G). Then there exists a path a = wyg,...,u,, = b in G with m = dg(a,b).
Therefore,

m—1

dx (f(a Z dx (f (u;), f (uiz1)) <K mC = C -dg(a,b). O

=0

)
<C
Lemma 5.10. For alln > 0, D,, embeds into (3" with distortion at most 2.

Proof. Recall that the Hamming cubes embed isometrically into ¢;. Therefore, it suffices to construct
embeddings f, : D, — Hyon (with k > 1), which we do by induction onn > 0. Let fy : Dy — Hj, C %
be such that fy(¢), fo(r) are neighbours in Hy. So fy is isometric (and we may choose k = 1, fo(¢) =0

and fo(r) =1).
Assume f, : D, — Hypn C 0" has been defined. We define f, 1 : D1 — Hyonsr C 027 as
follows:

o For x € Dy, welet fri1(x) = (fu(x), fu(z)),

o If xy € E, and u,v are the corresponding new vertices in D,,.1, we let

fra(w) = (fu(x), fuly))  and  fua(v) = (fuly), ful2))

Observe that, for z,y € Dy, || fot1(2) — fas1(y)ll, = 2| fu(z) — fn(v)]l;- Hence, for n > m > 0 and
2,y € D,
[fn(@) = Fa()lly = 27" [ fn(@) = ()] -

We first show that for all n > 0 and for all zy € F,,,

1fn(@) = fu()]ly = 1 = du(z,y).
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We prove this equality by induction on n: the result is clear if n = 0. Assume n > 1. An edge in D,,
is of the form zu, where there exists xy € F,,_1, and u, v are the corresponding new vertices in D,,.
Therefore,

[fn(2) = fa(@ly = | (fa1(2), fa1(2)) = (fr-a(2), foa W)y = [[fa-a(2) = faa ()l = 1.

It follows by Lemma 5.9 that f,, is 1-Lipschitz for all n > 0.
We next show that for all n > 0 and for all x,y € D,,

1

id"(x’ ). (*)

Note that, by the above, for all n > m > 0, if xy € E,,, then

[fn(2) = fa@)lly = 2" [[fm(2) = S]]y = 2" " dm (2, y) = dn(z,y).

We proceed to prove (x) by induction on n. Note that fy, fi are isometric, so () holds for n = 0, 1.
Now let n > 2 and assume that () holds for n — 1. Fix z,y € D,, and recall that D, consists of four
copies of D,,_1. Hence, we have three cases:

o Case 1: z,y are in the same copy, say =,y € D, _1(tf). Define gy : Do(tl) — Hor by go(u) =
fi(u), then define g, : D,, — Hjyom inductively, starting with gy and proceeding in the same
way as fn was defined from fo. An easy induction shows that g,—1 = fup, - By the
induction hypothesis,

1

1£2(2) = fa)lly = l9n-1(2) = ga1 (W)l = Sdp,sa(,y) 2 Sda(z.y).

DN | —

« Case 2: x,y are in neighbouring copies, say x € D,,_1(t{) and y € D,,_1(tr). We then have

1fo(z) = fa(@)ly Z 1 Fa(0) = fulr)lly = [1£a(0) = fa(@)[l, = | fay) = fulr)ll
> 2" f1(0) = Au(r)lly — dul@,0) = duly,T)
=2" —d,(x,0) — d,(y,r)

—_ (271_1 — an—l(M) (.T,E)) + <2n—1 o an_l(tr) (y’,r))
=d,(z,t) + d,(t,y) = d,(z,y).

« Case 3: x,y are in opposite copies, say = € D,,_1(t{) and y € D,,_1(br). We then have

dn(,y) = min {dy (2, 0) + 2" + dn(b,y), du(@, 1) + 2" + dy(r,y) } < 2"

) y )
dn(z,t) + d,(y,b) < d,(x,f) + du(y,r), from which it follows that d,(x,t) + d,(y,b) < 2"
Then

1Fn(x) = Fa(@)lly 2 [1£a(8) = Fa(O)lly = [1fn(t) = Fu(@)]ly = [[fnly) = Fu(O)],

1
> 2" —d,(x,t) — dn(y,b) > 2" > gdn(:my). ]

5.4 No dimension reduction in ¢,

Lemma 5.11 (Reverse Holder inequality). Let 0 < r < 1 and s < 0 such that 1 = %—I— % Given real
numbers (a;),c; and (b;);c; with b; # 0, we have

(Z |ai|’”) " <Z |bi|3)1/s < b,

el el el
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Proof. Apply Holder’s inequality with p = % and q = l—ir = —=

1/r 1/r —1/s
(ZWV) = (Z!aibﬂ’" |bi!_r> < (Z’CLM) <Z|bi|5> - O
icl il il il
Lemma 5.12 (Short Diagonal Lemma in L,). Let 1 <p < 2. For all xy,...,x4 € L,, we have

|1 — iESHf) +(p—1) lz2 — 964H§ < o — $2||120 + ||z — 953”2 + flzs — 934||120 + ||lza — 951”,3-

Proof. We may assume without loss of generality that z1,...,z4 € Z’; for some k (for example, k = 6
will do by Theorem 2.24). We now claim that the following inequality holds for all z,y € E’;:

1
22+ (o= 1) lol2 < 5 (e + w2+ 2 = wll2). )

If this is true, then we apply the inequality (x) to the pairs (z,y) = (22 + x4 — 221,24 — 22) and
(z,y) = (w2 + x4 — 223,24 — T2) tO get

2 + 24 = 2215 + (p = 1) [|22 — 24l

<2y =2l +2lws — 21,
2 + 24 — 2252 + (p — 1) 122 — 2ull) < 2||l2g — @35 + 222 — 232
Taking the average of the two above inequalities and using the convexity of z — ||2H§ yields

To+ T4 — 205 271 — X9 — 24
2 2

2 2 2
|21 — @3], + (p — 1) |lze — 24|, = +(p— 1) w2 — 24|

p

1 2 2 2
<3 (Il + 24 = 2as|[} + 11221 — 22 — 2a]l2) + (p = 1) |02 —
< o — 9€2||§ + [|z2 — $3||]2, + [lzs — 9€4||§ + [|zg — $1||129~

Therefore, it suffices to prove (x).

1
Note that, for a,b > 0, the function ¢ € [1, 00) (“q—;bq> /a is increasing, so (x) will follow from

2/p
: s (le 4yl e =yl
e e

To prove this, define

L(t) = ||zl + (p — 1) lyll> ¢,

R(t) = H(1)*",

k

Z |z + tyl” + o — tyi]”)

1 1
—— p _ p Z
H(t) = 3 (e + ol + e — ) = 53

From now on, we assume that z # 0 and y # 0. We want L(1) < R(1). Note that L(0) = R(0) =
||x||127 We differentiate:

L'(t) =2(p = 1) Iyl .

R(t) = ;H(t)i—lﬂf(t)

2_
P

I\D\’@

k
Z (|96z + by sgn (@ + tyi) i — |o — tyilP T sgn (@ — tyi) yz) :
=1

Note that L'(0) = R'(0) = 0. We differentiate again:
L'(t)=2(p— 1) |yl
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for R", welet I ={i€{l,....k}, z; #0 or y; # 0} # @ because x # 0 and y # 0. For i € I, there
is at most one value of ¢t such that x; + ty; = 0. Therefore, there is some subdivision 0 =ty < t; <
“o» <ty =10f [0,1] such that x; +ty; # 0 for all s € I and for all t € UjZ, (t;_1,%;). For such ¢, we
have

2 (2 2
R'(t) == ( - 1) H(t)s 2 (H'(t))* + S H(t)» “H"(t)

P \P p
2 2

> ZH(t)» "H"(t)
p

o 2 2_1p p—2, 2 p—2 2

= _H(t)» 5~ D)3 (s + tyal” ™ 7 + |2 =t 2 7).
p il

We now apply reverse Holder (Lemma 5.11) with a; = y2, b; = |z; + tyz-|p_27 r=2=%and s = 1_12/p =

z% to get

iel iel icl

Rqﬂ2HuﬁA@—n(znwﬂwp«§]%+W”yf+<2”%_w”yﬁ)

2

2 lz + ty|2% + |z — ty||2?
> H(t)r l(p—l)\lyllfﬂ( s s

p—2
|+ tyll) + ||z — tyHZ) 2

> 12— 0 ol (0

=2(p— 1) [yl
= L"(t).

Hence, for each 1 < j < m, (R—L)" > 0 on (t;_1,t;), so (R— L)' is increasing on [0,1]. But
(R—L)(0)=0,80 (R— L) >00n [0,1] and (R — L) is increasing on [0, 1]. It follows that

R(1) — L(1) > R(0) — L(0) = 0. O
Corollary 5.13. For 1 <p <2 andn € N,

¢y (Dy) = /14 (p— 1)n.

Proof. Note that D,, consists of copies zuyv of Dy, where zy € E,,_1 and u,v € V,\V,,_;. Now apply
Lemma 5.12 for a function f : D,, — L,:

1 () = £l + 1Lf () = fF@p + 1) = f@), + £ (w) = F@)1
> (I (z) = fW, + (0= 1[I f () = f(0)]],-

Summing over all copies of Dy in D,,, we get

S f@ =Wl = > @)= fWl,+ e -1 > If@) — fl,

ryekn, ryelbn 1 TY€An

> O -+ e-1) > If@) - f.

ryeA1U---UA,
This is a Poincaré inequality, so it gives a lower bound on the distortion by Proposition 4.8:

dn(0,7)? + (p— 1) Yo, 4P~ 14n—htt

Cp(Dn)2> ’E‘

=1+ (p—1)n O

Lemma 5.14. Given k > 2, the identity r, : (§ — € (with p =1+ 1og12k) has distortion at most 2.
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Proof. For x € R*, we have zll, < [lz|l, = o)) < K ||, so the distortion is at most

1/logg k logg k

kl—* N VATTTy . klog2k+l = 2Mom kT L Q. Il

Theorem 5. 15 For alln € N, there is a subset X of {1 of size | X| = N > n such that, if X —p (%,
then k > n32D2.

Proof. Let n € N. By Lemma 5.10, there is an embedding f : D,, — ¢; with distortion at most 2.
Set X = f(D,), so |X| = |D | < 4" Assume that g : X — ¢} has distortion at most D. Then the

composite Dy, & X % ok 2 05 (with p =1+ Toms L) has distortion at most 4D by Lemma 5.14. By
Corollary 5.13, 4D > /1 + (p — 1)n, or in other words,

n - %logQ\X|

16D > >
log, k log, k

logy| X
c;g221|72\ and hence k > | X |32D2 O

so log, k >

6 Ribe programme

6.1 Local properties of Banach spaces

Definition 6.1 (Banach-Mazur distance). Given two normed spaces X,Y, we define the Banach-
Mazur distance between them by

dX,Y)=  _if ||| 77| € [1, 0]

linear isomorphism

Definition 6.2 (Finite representability). Let X and Y be Banach spaces.

(i) We say that X is finitely representable in Y if for all X > 1 and for all finite-dimensional
subspaces E C X, there ezists a subspace F' C'Y such that d(E, F) < A.

(ii) We say that X is crudely finitely representable in Y if there exists A > 1 s.t. for all finite-
dimensional subspaces E C X, there ezists a subspace F' C'Y such that d(E, F) < \.

Example 6.3. (i) Every X is finitely representable in cy.

(ii) ¢y is finitely representable in every infinite-dimensional X by Dvoretzky’s Theorem (Theorem

3.2).

Definition 6.4 (Local property). A local property of a Banach space is one that depends only on
its finite-dimensional subspaces.

Example 6.5. Let X be a Banach space.

(i) For 1 < p < 2, we say that X has type p if there exists C > 0 s.t. for all n € N, for all

T1,...,Tn € X,
n n 1/p
e ([Se) <o (g
=1 =1

where €1, . .., &, are {£1}-valued independent uniform random variables.

(ii) For 2 < q < oo, we say that X has cotype q if there exists C > 0 s.t. for alln € N, for all

T1,...,Tp € X,
n 1 n 1/q
E 2* IL‘iq .
(Eeel) > e ()
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Having type p or cotype q are local properties of Banach spaces.
For instance, every X has type 1 and cotype oo; €y has type 2 and cotype 2 with C = 1.

Remark 6.6. If X is crudely finitely representable in'Y and Y has some local property, then so does
X.

Theorem 6.7 (Ribe). If Banach spaces X, Y are uniformly homeomorphic, then X is crudely finitely
representable in'Y and Y is crudely finitely representable in X .

Remark 6.8. Theorem 6.7 implies that local properties of Banach spaces depend only on the metric
structure.
This idea leads to the Ribe programme:

(i) Find metric characterisations of local properties of Banach spaces.
(ii) Find metric analogues of local properties of Banach spaces.

We aim here to find a metric characterisation of super-reflexivity.

6.2 Weak-x topology for Banach spaces

Definition 6.9 (Reflexivity and super-reflexivity). Given a Banach space X, there is a (not neces-
sarily surjective) isometric isomorphism X — X** given by x — Z, where 2(f) = f(x). The image
of X in X™ is a closed subspace, which we identify with X. We say that X is reflexive if X = X**.
We say that X is super-reflexive if every Y finitely representable in X is reflexive.
A super-reflexive Banach space is reflexive.

Remark 6.10. There exists a Banach space J such that J = J** but J**/J has dimension 1.

Example 6.11. Let X = (@,en {7),,- Then X is reflevive; however, {y is finitely representable in
X, and not reflexive, so X is not super-reflexive.

Definition 6.12 (Weak topology). The weak topology on a Banach space X is defined as follows:
U C X is w-open if for all x € U, there exist n € N, f1,..., f, € X* and € > 0 such that

{ye X, Vie{l,....n}, |fily—2x)| <e} CU.

This is the weakest topology on X for which every f € X* is continuous. In particular, it is contained
in the normed topology on X.

Proposition 6.13. Let C be a convex subset of a Banach space X. Then C is ||-||-closed iff C is
w-closed.

Proof. (<) The weak topology is contained in the normed topology.

(=) Assume that C is ||-||-closed. If ¢ C, then by the Hahn-Banach Theorem (Corollary 4.19),
there exists f € X* such that sup. f < f(x). Hence, {y € X, f(y) > sup. f} is a w-neighbourhood
of x disjoint from C'. O

Definition 6.14 (Weak-x topology). The weak-x topology on X* is defined as follows: U C X* is
wx-open if for all f € U, there exist n € N, x1,... 2, € X and € > 0 such that

{ge X", Vie{l,....,n}|(g—f) (z;)| <e} CU.

This is the weakest topology on X* for which every x € X C X™* is continuous. In particular, it is
contained in the weak topology on X*.

Theorem 6.15 (Banach-Alaoglu). Let X be a Banach space. Then Bx« = {f € X*, ||f|| <1} is
w*x-compact.
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Proof. Let K = [l,ex [— |lz]l,+ [|z]|] with the product topology. Note that K is compact by Ty-
chonoft’s Theorem. Now consider

o:f€Bxs — (f(x)),ex € K.

If Bx+ is equipped with the weak-* topology, then ¢ is a homeomorphism onto its image. Moreover,

o (Bx) = (1 {(Aa)ucx » Aazity — ads — bA, =0},
z,yeX
a,beR
so ¢ (Bx+) is closed, hence compact. ]

Lemma 6.16 (Local reflexivity). Let X be a Banach space. Let E C X* be finite-dimensional, let
@ € X** and M > ||¢||. Then there exists x € X such that ||z|| < M and 2\ = ¢ .

Proof. Fix a basis f1,..., f, of E/, and define T': X — R" by

Tx = (fi(x))1<i<n'

Let C = {Tw, ||z|| < M}; we need (¢ (fi))1<;c, € C-

Note that T" is a bounded linear map and C' is convex. We show that 7' is onto: if not, then
there exists a € (ImT)" \{0}, i.e. such that 37, a;fi(z) = 0 for all # € X; hence Y7, a;f; = 0,
a contradiction. Therefore, T is onto. By the Open Mapping Theorem, C' is open. Assume for
contradiction that (¢ (fi)),<;<, ¢ C- Then by Hahn-Banach, there exists a € R™\{0} such that

> aafile) <3 o ()

for all z € X with ||z|| < M. It follows that

St 01 < (S at) <ol
=1 i=1

n
Z ai fi| -
i=1

Since >0, a; f; # 0, we get M < ||¢||, a contradiction. O
Theorem 6.17 (Goldstine). Let X be a Banach space. Then, in X**,
E/l;;* - BX** .

Proof. (C) Since Bx C Bx+ and Bx« is wx-closed by Banach-Alaoglu (Theorem 6.15), it follows
that By C Bxw.

(D) Fix ¢ € Bys« and let U be a wx-neighbourhood of ¢). Then there are n € N, f,..., f, € X*
and € > 0 such that

{XGX**, ViE {17"'7n}7 |(X_¢>(fz)| <5}gu-

Fix 6 > 0 to be chosen later. By Lemma 6.16, there exists x € X such that ||z]] < 1+ ¢ and
filx) = (f;) for all 4. If ||z]| < 1, then & € Bx NU, so we are done. Otherwise, ||| > 1 and

I fi(x) |fi(z)
fi) =¢(fi)| = —fiﬂi‘: L—|lz|l[ <o/
iz (fi) = (f) 2] () Tz 1= llzll] < a1l
for all i. We can choose 0 such that 0 || f;|] < € for all 4; hence % € Bx NU. O

llzll
Corollary 6.18. A Banach space X is reflexive if and only if Bx is w-compact.
Proof. (=) If X is reflexive, then X = X*™* so (X, w) = (X, wx), so (Bx,w) = (Bx»,w%*), which
is compact by Banach-Alaoglu (Theorem 6.15).
(<) The restriction to X of the weak-* topology on X** is the weak topology. So By is weak-x

compact in X** by assumption, and in particular By is weak-* closed. Hence (by Theorem 6.17)
Bx+- = By = By and hence X** = X. O
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6.3 Characterisation of reflexivity in terms of convex hulls

Theorem 6.19. Given a Banach space X, the following assertions are equivalent:
(i) X is non-reflexive.
.. 0 ifi<y
(ii) V6 € (0,1), 3(x:);>1 € Bx, I(fi)iz1 € Bx+, Vioj 2 1, fi(z;) = f .
- 0 ifi>7
0 ifi<y
(i) 30 € (0,1), I(xi);ny € Bx, (fi)izy € Bx=, Vi, j 2 1, fi(x;) = f .
- 0 ifi>7
(iv) V0 € (0,1), 3(v),5, € Bx, Vn € N, d(Conv {xy,...,2,},Conv{Zpi1, Tnia,... }) = 0.
(v) 30 €(0,1), 3(xi);5, € Bx, ¥n €N, d(Conv{zy,...,2,},Conv {Zp 41, Tnya, ... }) = 0.

Proof. (i) = (ii) Since X is non-reflexive, it is a proper closed subspace of X**, so by Hahn-Banach
there exists 7' € X™** such that ||T'|| = 1 and Tjx = 0. Fix 6 € (0,1) and choose ¢ € X** such that
o]l <1and A =Ty > 6. Then

0 <A=Te<|T|-llell = llell <1,
i.e. < A < 1. Moreover, since ||¢|| > 0, there exists f; € Bx« s.t. ¢ (f1) = 6. Then

0 =@ (f) < llell - LA < AN

and hence there is 21 € By such that f; (x1) = 6.
Assume now that for some n > 1, we have found (;),,., € Bx and (f;),;,, € Bx- such that

0 if1<i<j<n
fz(x]): . . . )
0 f1<j<i<n
and ¢ (f;) = 0 for 1 <i < n. Since TmZ—Oforlgzgnand Te=Xand ||[T|| =1< 2, Lemma

6.16 1mphes the ex1stence of g€ X* st |lg]] <% and g(z;) =0 for 1 < i< nand (g ) = A Set
fop1 = /\g € Bx-, so that f,+1 (z;) = 0 for 1 < i< nand p(fp1) = 6. Since ¢ (f;) = 0 for
1 <i<n+1and|¢| <1, Lemma 6.16 implies the existence of z, 11 € By such that f; (z,41) =6
for 1 <i<n+ 1. Now the construction continues inductively.

(ii) = (iii) and (iv) = (v) Obvious.

(ii) = (iv) and (iii) = (v) Fix 6 € (0,1). Assume that there are (;),,.,, € Bx and (fi),;, €
By« such that (ii) (or (iii)) holds. Given n € N and finite convex combinations Y I, t;z; and

41 iy, we have

2 | fur1 ( > tixi—ztﬂ?i)‘ = > 0t; =0,
i=1

=1

i=n—+1

which proves that d (Conv{zy,...,x,},Conv{x,i1, Tpia, ... }) = 0.
(v) = (i) Assume that there is ¢ € (0,1) and (;),5; € Bx such that (v) holds. Assume for
contradiction that X is reflexive. For n € N, let

C,, = Conv{Z,i1,Tpio,...}.

Then the [|-||-closure C,, is a ||-||-closed, hence w-closed subset of By. Moreover, C; 2 Cy D -,
and C,, # @ for all n. Since By is w-compact by Corollary 6.18, we have

N Cn+# 2.

n=0
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Pick x € (59 Cn. Since = € Cy, there is y € Cy such that ||z — y|| < §. Choose n > 1 such that
y € Conv {z,...,z,}. Since x € C,,, there is z € C,, such that ||z — z[| < &. Then

d(Conv{zy,...,x,},Conv{x,i1, Tpio, ... 1) < ||y — 2] < =0,

a contradiction. O

6.4 Ultrafilters
Definition 6.20 (Filter). Fix a set I # &. A filter on I is a family F C P(I) such that
(i) I € Fand @ ¢ F.
(i) If AC BC I with A€ F, then B € F.
(iii) If A,B e F, then ANB € F.
Example 6.21. Let [ # @.
(i) Forie I, Uy ={AC 1, i€ A} is a filter — the principal filter at i.
(il) If I is infinite, then {A C I, I\ A is finite} is a filter — the cofinite filter.

Definition 6.22 (Convergence along a filter). Let X be a topological space, f: 1 — X be a function
and F be a filter on I. For x € X, we write x = limz f if for all neighbourhoods U of x in X, the
set {iel, f(i)eU} isin F.

Note that if X is Hausdorff, v =limz f and y = limx f, then x = y.

Example 6.23. (i) If [ = N and F is the cofinite filter on N, then convergence along F is the
usual notion of convergence of sequences.

(i) If F =U; for some i € I, then f(i) =limg f holds for all f: 1 — X.

Definition 6.24 (Ultrafilter). Let I be a nonempty set. An ultrafilter on I is a mazximal filter on
I: it is a filter U such that, if F is a filter and U C F, thenU = F.

Example 6.25. Any principal filter Uy = {A C I, i € A} is an ultrafilter. If I is finite, these are
the only ultrafilters. Otherwise, a free ultrafilter is an ultrafilter that is not principal. For instance,
any ultrafilter containing the cofinite filter is free.

Proposition 6.26. Any filter is contained in an ultrafilter.
Proof. Use Zorn’s Lemma. O]
Lemma 6.27. Let U be an ultrafilter. If AUB €U, then AeU or BeU.

Proof. Assume that there exist C, D € U such that ANC' = BND = @. Then (AU B)N(C N D) =@,
which is impossible because AU B,C' N D € U. We may therefore assume without loss of generality
that ANC # @ for all C' € Y. Therefore F = {D C I, 3C €U, D D ANC} is a filter on I, and
F DU so F=U. In particular, A e F =U. n

Remark 6.28. (i) Every free ultrafilter contains the cofinite filter.

(il) For an ultrafilter U, define

0 fAZU

M:AEP(])r—>{1 FAcu’

Then 1 is a finitely-additive measure.
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Lemma 6.29. Let U be an ultrafilter on a set I and let K be a compact topological space. Then for
every f . I — K, there exists x € K such that

= lim f.
r = lim f
In particular, for every bounded function f : I — R, there is a unique x € R such that x = limy, f.

Proof. If this were not the case, then for every x € K, there would be an open neighbourhood V,
of x st. A, = {1 €, f(i) e Vo,} ¢ U. Since K is compact, there is a finite F© C X such that
User Ve = K. Then Uyerp Ar = I € U, and by Lemma 6.27, there exists « € F such that A, € U.
This is a contradiction. O

Remark 6.30. Given bounded functions f,g: 1 — R and an ultrafilter U on I, we have
lgn(f+g) =lim f+lmg  and  lm(fg) = (tim /) (timg).
Moreover, if f(i) < g(i) for alli € I, then limy, f < limy, g.

6.5 Ultraproducts and ultrapowers

Definition 6.31 (Ultraproducts). Fiz a set I # @ and an ultrafilter U on I. Given Banach spaces

(Xi);ep» we set
(EBXZ> — {x € [[ Xi, sup |z < oo} .
icl oo el icl
This is a Banach space with norm ||x|| = sup,¢; ||x:]|. We define

Il = ign [l

This defines a seminorm on (@e; Xi).- It follows that

Ny = {x e (@X)OO Iz, = 0}

is a closed subspace of (B;cr Xi).,- The quotient is denoted by

(13),- (@)

icl iel .

[clol

It is a normed space with ||xy|l,, = ||z||,,, where for x € (Bie; Xi)y, 2u = v+ Ny € (Tlier Xi)y-
Moreover, this norm is complete, so (I1;e;r Xi),, is a Banach space — called the ultraproduct of the
(Xi)iel'

If X; = X for alli € I, where X is some Banach space, then (ITicr Xi)u is denoted by XY —
called an ultrapower of X.

Proposition 6.32. Any ultrapower XY of a Banach space X is finitely representable in X .

Proof. Let E be a finite-dimensional subspace of X¥. Choose a basis e1,...,e, of E. For each
1 < k < n, fix (74,),c, a bounded sequence in X such that e, = (("Ek‘vi)z‘el)u‘ Hence, for all
O‘k>1<k<n S an

> Aer, = (Z /\kwm>

k=1 k=1 ier) y
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Fix ¢ > 0. We seek an injective linear map T : E — X such that ||T]| |77} < 1+ ¢e. Choose
o€ (O, %) such that 11_—% < 1+e. Let S C R"™ be a finite set such that

g = {Z )\kek, (Ak)lgkgn € S}

k=1

is a 6-net for Sp = {z € E, |z|| = 1}. For all (\x), ., in S, we have

hm Z)\kxm = =1,
k=1 u
it follows that .
{iE[,1—5< ZA’C‘T’W <1+5}€U
k=1

Since S is finite, the intersection of these sets (for (A\p),,c,, € S) is in U; in particular, their
intersection is nonempty, so there exists ig € I such that, for all (/\k)1 <hen €5,

<1+4+6.

n
Z Akxk,io

k=1

1-0<

Now define

T : (Z ,ukek> c F+— (Z /kak,i()) e X.

k=1 k=1

Given z € Sg, there exists z € S such that ||z — z| < . Hence
ITz]] < T2 + 1T(z = 2)| <1+ + [T - 0.
Taking the supremum over z € Sg yields ||T|| < 1+ 6+ 6 ||T, i.e. |T|| < ££2. It follows that

1+0 1—30
> - = = :
Tl > T2 = TG — )l 31— 6 — a6 = ——

Therefore |77 < and ||T|||T7Y < &2 <1 +e. O

1 357 1-36

6.6 Isomorphic characterisation of super-reflexivity

Theorem 6.33. Let X be a Banach space. Then the following assertions are equivalent:
(i) X is super-reflexive.
(ii) FveryY crudely finitely representable in X is reflexive.

Proof. (ii) = (i) OK because every Y finitely representable in X is crudely finitely representable and
hence reflexive.

(i) = (ii) Assume Y is non-reflexive and crudely finitely representable in X. Fix § € (0,1). By
Theorem 6.19, there is a sequence (y;),., in By such that for all n,

6.

WV

d(Conv {y1, ..., yn}  {Yn+1, Ynr2,---})

There exists A > 1 such that for any finite-dimensional subspace £ C Y, there is a linear map
T : F — X such that

1
3wl < Tyl < lly|
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for all y € E. In particular, for N € N, there is a linear map T : Span (y1,...,yny) — X such that
% lyll < I Tnyll < |ly|| for all y € Span (yi,...,yn). Set

zn; =Ty (y;) € Bx
for 1 < ¢ < N. Note that for 1 < m < n < N and for convex combinations 1", t;xy, and

n
> imma1 LiT N, we have

> >

> >

Sty — Y.t
i=1

i=m+1

1
A

m n
S tiwng— >, tiwng
i=1

i=m+1

Now fix a free ultrafilter &/ on N and define

. TN if 4 < N
TN, = . )
0 otherwise

and set T; = (@N’i)N%)u' Given 1 < m < n and convex combinations z = >7", t,7; and w =
> it tii in XY we have

m n 9
YotiTni— Y, il =1
i=1 i=m+1 A
for all N > n; it follows that ||z — w| > %. Thus,
_ _ _ _ 0
d(Conv{Zy,...,Tm},Conv{Zpi1, Tmio,--- ) = T
By Theorem 6.19, X¥ is non-reflexive. But it is finitely representable in X by Proposition 6.32;
hence X is not super-reflexive. n

6.7 Uniform convexity
Definition 6.34 (Strict convexity and uniform convexity). Let X be a Banach space.

(i) X is strictly convex if for all x,y € Sx with x # y,

%H < 1.

(ii) X ¢s uniformly convex if for all e € (0,2], there exists § > 0 such that for all z,y € Sx with
|z —yl|| > e, we have

x+yH<1—&
2
The module of uniform convexity of X is the function dx : [0,2] — R defined by

5X@)::x£g¥(1_
lz—yl[>e

=)
cal)

Example 6.35. (i) ¢y is uniformly convex.

(i) co, 1, are not strictly conver.

(iii) Let 1 < p, < 2 such that p, —— L and set X = (69@1 e )e . Then X is strictly convex but
n—o00 "/ lo

not uniformly convex. However, X is isomorphic to (P>, E%)b = ly, so uniform convexity is
not an isomorphic property.

Proof. (i) Given x,y € Sy, with ||z — y|| > &, we have 4 = 2 H:Jc||2 +2 Hy||2 = ||z + y||2 + ||z — yH2 >

Iz +y||* + 2, so
2 2
x+yH<w1—6~1—5. 0
2 4 8
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Remark 6.36. Let X be a Banach space. Recall from Theorem 6.17 that By = Bx«. In fact, if
dim X = oo, then Sy = By

Proof. Let ¢ € Bx« and let U be a wx-neighbourhood of ¢. Without loss of generality, there exist
fi,.oy fn € X* and € > 0 such that

U={veX™ Vie{l... 0}, |(—¢)(fi)] <&l

Choose x € Bx NU. Since dim X = oo, take z € N, Ker f;\{0}. Then =z + Az € U for all A € R,
and there exists A € R such that ||z + Az|| = 1. O

Theorem 6.37 (Milman-Pettis). If a Banach space X is uniformly convex, then X is reflezive.

Proof. We assume without loss of generality that dim X = oco. It suffices to show that Sx« C X.
Let ¢ € Sx+, € € (0,2) and 6 = dx(¢) > 0. Hence, for all z,y € Sx with ||z +y|| > 2 -,

)
gi 67
| <3+

Tr+y
2

1—

and hence ||z — y|| < e. Choose f. € By- such that ¢ (f.) > 1 — 2 and let

vo={vexm v z1-3);

this is a wx-closed neighbourhood of ¢. Hence, W. = V. N Sx is a nonempty (by Remark 6.36) and
||-||-closed neighbourhood of ¢. Also, given z,y € W., we have

lz+yll = fe(z+y) =2—4,

and hence ||z — y|| < e. Thus diam W, < e.
Now, for n > 1, let

An: n |)|/1/k: {:L‘GS)(, Vk € {1,...,n}, fl/k(x) 2 1_§5X (k)}
k=1

Hence, A, is a nonempty and ||-||-closed subset of X with diam A4,, < 1. Moreover, A, 2O A, for
all n. By completeness of X, there exists z € Sx such that N>, 4, = {z}.

We now show that ¢ = Z. If not, then there exists g € X* such that n = ¢(g) — g(z) > 0.
Consider

2
The set B, is nonempty, |-||-closed, and diam B,, < diam A4, —— 0. Hence, N,>1 By = {z} and

Rfa%ﬂ{¢€X“JMm—¢@H<n}

l¢(g) — g(x)| < 3, a contradiction. 0

Theorem 6.38 (Enflo). If (X, ||-||) is a super-reflexive Banach space, then there is an equivalent
norm |||-||| on X such that (X, |||-|||) is uniformly convez.
Recall that the norms ||-|| and ||| are equivalent if idx : (X, ||||) = (X, ||-|]) és an isomorphism.

Example 6.39. The space ly @y (2 is not strictly convex, but it is isomorphic to ly @y 3 =2 ly, so it
1s super-reflezive.
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6.8 Finite tree property

Definition 6.40 (Binary tree). The binary tree B, of depth n is the graph with vertex set J{_,{0, 1}*
and where € = (g1, ...,&;) € {0,1}F is joined to (e1,... e, 1) forie {0,1}.

Given e = (g1,...,e5) € {0,1}* and 6 = (1,...,8,) € {0,1}, we write e < 0 if k < L and g; = §;
for 1 < i< k. We also let |e| = k denote the length of .

Definition 6.41 (Finite tree property). A Banach space X has the finite tree property if there ezists

0 >0 such that for all n > 1, there exist (v.).cp i Bx such that

Le = 5 (1350 + x€1> and H‘r‘€ - xs,i” 2 0

foralle € B, and i € {0,1}.

Definition 6.42 (Strongly exposed point). Given a conver set C' in a Banach space Z, a point
w € C' is strongly exposed if there exists [ € Z* such that

(i) For allu € C\{w}, f(u) < f(w).
(ii) diam{u € C, f(w) —e < f(u)} — 0

Theorem 6.43. Every nonempty w-compact convex subset of a separable Banach space has a strongly
exposed point.

Theorem 6.44. For a Banach space X, the following assertions are equivalent:
(i) X is not super-reflexive.
(ii) X has the finite tree property.

(iii) There exists 6 > 0 such that for all n € N, there exist (r;),;,, in Bx such that

n m
Z a;T; 2 0 Z a;
=1 =0

for all (a;),;c,, in R and 1 <L <m < n.

Proof. (i) = (ii) Assume that there is a non-reflexive space Z which is finitely representable in X.
Fix 6 € (0,1). By Theorem 6.19, there is a sequence (z,),,5, in Bz such that, for all n,

d(Conv{z1,...,2,},Conv{zui1, Zni2, ... }) = 0.
For e = (1,...,6,) € By, let k(e) = 1+ X1, 2" %g;; for § € By, let
Is ={k(e), e = 0, |e| = n}.
Set z5 = 2/91-n Yker; 2k Since |Is| = 2710l we have z, € Conv {zx, k € Is} C Bz. Moreover, for

0 € B,,_1, we have Is = ;0 II I5; and moreover k < ¢ for all k € Isy and ¢ € I5;. It follows that

1
25 = 5( 50+ 251)

and for ¢ € {0, 1},

1 1
|25 — zs4ll = 5 llz6.0 — 251l = Ed(ConV {zk, k € Isp},Conv{z, k€ Is1}) > —.

|

b N

Hence Z has the finite tree property, and so does X since Z is finitely representable in
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(ii) = (i) Assume that there exists # > 0 such that for all n > 1, there exists {:L'(") € B, } C Bx

with z{" = 4 x(rg —|—x€1 for all ¢ € B,_;, and ||z(™ — xs’i > 0 for i € {0,1}. Let U be a free
ultrafilter on N, and let 5, = Uy Bx be the mﬁnlte binary tree. Set

=) _ {1’2") if ] <

€ . bl
0 otherwise

and 7, = ((m > € XY, Tt is easy to see that 7, = %(xgo + Z.1) and ||T. — To ;]| = 0 for all

€ € By andze{ 1}. L
Z = Span {Z., ¢ € B,,} C X“.

This is a separable subspace of X¥. Assume for contradiction that X is super-reflexive. Then Z is
reflexive by Proposition 6.32. It follows by Corollary 6.18 that By is w-compact. Let

C = Conv{zx,, ¢ € B} C By.

Then C' is a ||-||-closed convex subset of Bz, and hence C' is w-compact. By Theorem 6.43, C' has
a strongly exposed point w, so there exists f € Z* such that f(u) < f(w) for all u € C\{w}, and
there exists 7 > 0 such that

diam {u € C, f(w) —n < f(u)} < g

Since {u € C, f(u) < f(w) —n} € C is ||-||-closed and convex, it cannot contain {Z., € € By}, so
there exists € € By such that f (Zs) > f(w) —n. Therefore 5 (f (Z-0) + f (Z1)) = f (Z.), so there
exists ¢ € {0,1} such that f(Z.;) > f(w) —n. Thus ||Z. — Z.,| < £, a contradiction.

(i) = (iii) Assume that there exists Z non-reflexive, finitely representable in X. By Theorem
6.19, there exist 0 € (0,1), (2;);5, € Bz and (h;),», € Bz~ such that

0 ifi<y
hi(zj):{ o .-

0 ife>7

Y, <Z CL¢Z¢>
i=1

Given scalars (a;), ., € R,

~X

n
al-;
i={

<1 Zaizi .
0 =1

If1</<m<n,then

m n n
Zai < Zai + Z a Zill -
i=¢ i=0 i=m—+1
Since Z is finitely representable in X, for all A > % and for all n > 1, there exist z,...,x, € Bx
such that
m n
Z a;l <A Z a;T;
i=0 i=1

for all (a;);;c,, € Rand 1 <L <m < n.
(iii) = (i) Assume that there exists § > 0 such that for all n > 1, there exist oM 2™ e By

such that . . '
> aix,gn) 0> a;
i=1 i=0

for all (a;), <i<n € R and 1 </ < m < n. Given a free ultrafilter & on N, the usual process yields an
infinite sequence (;),., € Bxu such that for all n € N, (a;);,, € Rand 1 <L <m <,

m
29 ZCLZ‘ .
i={
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It follows that for every ¢ € N, we can extend

he (5 6 ifi<j
i\Tj) =
! 0 ifi>j

to a well-defined linear functional on X¥ with ||| < 1 (by Hahn-Banach). Now by Theorem
6.19, X" is not reflexive. But by Proposition 6.32, X¥ is finitely representable in X, so X is not
super-reflexive. O

Remark 6.45. Let S be the set of sequence (a;) -, in R such that 3272, a; is convergent. This becomes

a normed space with
m

S al.

i={

lal| = sup
1<l<m

This is called the summing norm. Note that S is isomorphic to cy via the map a > (332, ;)5 -

6.9 Metric characterisation of super-reflexivity

Theorem 6.46. Let X be a Banach space. Then the following assertions are equivalent:
(i) X is not super-reflexive.
(ii) The sequence (D), of diamond graphs embeds uniformly bilipschitzly into X.

Sketch of proof. (ii) = (i) Assume that there are f, : D,, — X with sup,,. dist (f,,) < co. Without
loss of generality, there exists 6 > 0 such that, for all n and for all =,y € D,

027" dn (2, y) < [|fu(@) = fu(y)|| < 27"dn(2,y).
Fix n and write f = f,,. Let 25 = f(t) — f(b) € Bx. Note that
I[CF(E) = £(0) = (f(0) = fO)] = [(f @) = f(r)) = (f(r) = F(O)]]]
= 12(f(r) = FO)I| = 2027"d, (L, ) = 26.

Without loss of generality, |[(f(t) — f(£)) — (f(€) — f(b))|| = 6. Let 2o = 2(f(¢) — f(b)) and 1 =
2(f(t) — f(£)). Then zy = % (xo + 1), and ||y — 2o = 3 [|[#1 — 20| = 6. Then continue inductively.

(i) = (ii) Assume that there exist § > 0 satisfying Theorem 6.44.(iii). Then define f, : D,, —
{0,1}%" C £2" as follows: fo(t) =1, fo(b) = 0, then if xy € E,_;, we assume that f, (), fu_1(y) €
{0,112 differ in one component, say the j-th one. Consider Di(zy) = {z,y,u,v}, and set
(fo(w))giy = (fa(v)g; = (fa—1(2));, ete. 0
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