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Introduction
This report has been written after a two-month stay in Instituto de Matemática Pura e Apli-

cada, in Rio de Janeiro. The work undertaken there aimed to study complex algebraic geometry
by coming back to Picard’s work, and most notably his book [PS71]. A first prerequisite was to
learn the foundations of singular homology and, later, of complex geometry. After that, some
time was spent studying the book of Picard directly, trying to understand some of the ideas
despite the extraordinary shift in mathematical style that can be felt more than one hundred
years after the time of writing. The aim was then to write fully modern and rigorous proofs
of two related theorems by Picard, using [Mov19] as a compass and learning new mathematics
along the way. We now present a sample of this work, with the hope that it will make the
mathematics of yesterday meet that of today.

Terminology and notations
Throughout this text, we will work over an algebraically closed field k, being mostly interested

in the case where k = C. Only in Section 3 will we need to work over the field of real numbers,
and in this case we shall write K to denote either R or C.

If I is an ideal of the ring k [x1, . . . , xn], we will denote by V (I) = {x ∈ kn, ∀f ∈ I, f(x) = 0}
the vanishing locus of I. If S is a subset of the affine space kn, we will denote by I(S) =
{f ∈ k [x1, . . . , xn] , ∀x ∈ S, f(x) = 0} the ideal of S. The maps I 7→ V (I) and S 7→ I(S) are
nonincreasing (for the order induced by inclusion). We will call affine variety any subset of
the affine space kn that is the vanishing locus of some ideal I of k [x1, . . . , xn]. We will make
frequent use of the following two (equivalent) versions of the Nullstellensatz.

Theorem 0.1 (Nullstellenstaz). (i) The maximal ideals of k [x1, . . . , xn] are the ideals of the
form (x1 − a1, . . . , xn − an) for (a1, . . . , an) ∈ kn.

(ii) If I is an ideal of k [x1, . . . , xn], then I (V (I)) =
√
I.

Given a twice differentiable map f : X → Y between two manifolds, a point x ∈ X will be
called a regular point if df(x) is onto, and a singular point otherwise. A point y ∈ Y will be
called a regular value if all points of f−1 ({y}) are regular, and a singular value otherwise. A
singular point x ∈ X will be called degenerate (respectively nondegenerate) if the quadratic
form d2f(x) is degenerate (respectively nondegenerate).

Given a map f : X → Y and a subset S ⊆ Y , we shall write LS = f−1(S) if it is clear from
the context that the fibres are considered with respect to f .

Contents
1 Historical perspective: from integrals to algebraic topology 2

1.1 Elliptic integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Integrals on curves and surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 De Rham cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Analysis situs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Algebraic de Rham cohomology 4
2.1 Module of Kähler differentials and algebraic de Rham complex . . . . . . . . . . 4
2.2 Regularity hypotheses for polynomials . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Towards the cohomology of affine varieties: de Rham’s Lemma . . . . . . . . . . 9
2.4 De Rham cohomology of nonsingular tame varieties . . . . . . . . . . . . . . . . . 12

1



Topology of complex affine varieties Alexis Marchand

3 Interlude: connectedness of real and complex affine varieties 14
3.1 Finiteness of the set of connected components . . . . . . . . . . . . . . . . . . . . 14
3.2 Decomposition into submanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Applications to finiteness results for singularities . . . . . . . . . . . . . . . . . . 17

4 Singular homology of complex affine varieties 19
4.1 Homology of fibres near isolated nondegenerate singularities . . . . . . . . . . . . 19
4.2 Lifting retractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Assembling singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Treatment of degenerate singularities and proof of the main theorem . . . . . . . 23

5 Conclusion: at the junction of two paths 24

References 25

1 Historical perspective: from integrals to algebraic topology

1.1 Elliptic integrals

The story of this report starts with the problem of computing integrals on affine varieties.
Perhaps the first historical instance of this problem was the interest in elliptic integrals in the
eighteenth century, i.e. integrals of the form∫ b

a

p(x)√
q(x)

dx,

where p is a polynomial and q is a polynomial of degree 3 or 4. The above elliptic integral can
be rewritten as ∫ b

a

p(x)
y

dx,

where integration is done on the so-called elliptic surface S =
{
y2 = q(x)

}
. In this formulation,

the integrand has become a rational function of x and y; however, new issues arise and in
particular the following one: is the above integral well-defined or does it depend on the path
chosen on the surface S between the endpoints a and b? As we are going to see, this problem will
lead us to profound questions regarding the topology of elliptic surfaces and of affine varieties
in general.

1.2 Integrals on curves and surfaces

In the late nineteenth century, Émile Picard together with Georges Simart undertook an
extensive study of integrals on affine varieties in [PS71]. Their aim was to count the number of
linearly independent integrals on a complex algebraic curve or surface X, and to classify them
as integrals of the first, second or third kind. This classification very much reflects the issue of
well-definedness of integrals; we give its definition in the 1-dimensional case (the general case
being similar).

Consider a complex algebraic curve X =
{
(x, y) ∈ C2, f(x, y) = 0

}
, where f is a polynomial

in x and y, and let
∫
ω be an integral on X satisfying the integrability condition (in a more

modern language, ω is a rational 1-form on X such that dω = 0).

(i) We say that
∫
ω is of the first kind if for every choice of holomorphic map ψ : U → X

from an open neighbourhood U of 0 in C, the meromorphic function z 7→ ω (ψ(z)) · ψ′(z)
is holomorphic at 0.
Equivalently, for every path γ in X with endpoints a and b,

∫
γ ω has a finite value that

only depends on the homotopy class of γ (with fixed endpoints).
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(ii) We say that
∫
ω is of the second kind if for every choice of holomorphic map ψ : U → X

from an open neighbourhood U of 0 in C, the meromorphic function z 7→ ω (ψ(z)) · ψ′(z)
has no residue at 0.
Equivalently, for every contractible loop γ on X,

∫
γ ω = 0.

(iii) Otherwise, we say that
∫
ω is of the third kind.

1.3 De Rham cohomology

When Picard and Simart explored integrals, they did not have a notion of differential forms;
those were introduced later by Élie Cartan and led to the modern concept of de Rham cohomol-
ogy. However, it can be argued that Picard and Simart were already computing the (rational)
de Rham cohomology of surfaces. For them, the main object of study was the integral but
they were also considering the integrand under the name of “différentielle totale”; moreover,
they always assumed that the integrability condition was satisfied — in other words they only
considered closed forms. Finally, they considered two integrals to be distinct only when their
difference was not a rational function of x, y, z — this amounts to identifying with zero any
exact differential form.

The following theorem from [PS71, Vol. I, p.113] is therefore a result about the de Rham
cohomology of complex algebraic surfaces.

Theorem 1.1 (Picard-Simart). “Une surface n’a pas, en général, d’intégrale de différentielle
totale de première espèce.”

For Picard and Simart, a surface is a variety X =
{
(x, y, z) ∈ C3, f(x, y, z) = 0

}
, where f is

a polynomial. The theorem says that, on a ‘general surface’, all integrals of the first kind are
trivial.

Considering integrals of the first kind amounts to computing algebraic rather than rational
de Rham cohomology. We shall prove the above theorem in Section 2 after having developed
the modern algebraic point of view formally defined by Grothendieck, Atiyah and Hodge, and
we shall make more precise what could have been meant by a ‘general surface’.

Some of the computations we will do would not have been anachronic when Picard and
Simart published their book even though the language would. Indeed, the study of cohomology
arguably originated in algebra, in works like that of Picard and Simart, even though it was first
formally defined in the context of differential topology following the work of de Rham. Hence,
in some sense, algebraic de Rham cohomology goes back to the source of modern cohomology
theories.

1.4 Analysis situs
Picard and Simart’s work on integrals on affine varieties was done at the same time or shortly

after Poincaré’s foundational work on algebraic topology, which was then known as analysis
situs or géométrie de situation. At the time, the main objects of interest in algebraic topology
were the Betti numbers of topological spaces, which were more commonly referred to as orders
of connection, and which correspond to the modern-day ranks of homology groups. Picard
and Simart were interested in the link between the Betti numbers of affine varieties and the
integrals on these varieties, and their book provides various results relating the Betti number to
the number of independent integrals. One theorem of [PS71, Vol. I, p.85] will be of particular
interest to us; it says that ‘most algebraic surfaces’ have trivial homology of order 1. In Picard’s
language, the theorem is stated as follows (note that Picard’s p1 is shifted by 1 as compared to
the modern first-order Betti number).

Theorem 1.2 (Picard-Simart). “[Le nombre p1] est, en général, égal à l’unité ; c’est seulement
pour certaines surfaces particulières que p1 est supérieur à 1.”
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Proving a formalised and generalised version of this theorem will be the goal of Section 4.
The techniques we shall use are those of Picard-Lefschetz Theory, which originated in Solomon
Lefschetz’s study of the Betti numbers of affine varieties in the first half of the twentieth century;
the key idea will be to consider loops around singular values of holomorphic functions.

2 Algebraic de Rham cohomology
De Rham cohomology is a very powerful tool to study the topology of differentiable manifolds;

its rather concrete definition makes computations feasible, yet it provides deep information about
the topology of manifolds. Algebraic de Rham cohomology is the analogue in algebraic geometry,
where differential forms will be defined using polynomials instead of smooth functions. After
having constructed algebraic de Rham cohomology, our goal will be to prove that, with suitable
hypotheses, all the cohomology groups of affine varieties of dimension n are trivial up to the
order n− 1.

2.1 Module of Kähler differentials and algebraic de Rham complex

For a k-algebra R, we shall construct the module of differential forms of R over k, our moti-
vation being the case where R = k [x1, . . . , xn] /I for some ideal I of k [x1, . . . , xn]. The idea of
the construction will be to view R as the ring of functions of V (I) and define differential forms,
the exterior differential and the de Rham cohomology in such a way that computations work in
the same way as in the differential case.

The module of Kähler differentials of R over k is the following R-module:

ΩR =

⊕
f∈R

R df

 /N,
whereN is the submodule of

⊕
f∈RR df generated by

{
d(a1a2)− a1 da2 − a2 da1, (a1, a2) ∈ R2}

and
{
d(λ1a1 + λ2a2)− λ1 da1 − λ2 da2, (λ1, λ2) ∈ k2, (a1, a2) ∈ R2}. The module ΩR is en-

dowed with a k-linear map d : R→ ΩR which is a derivation, i.e. we have the equality

d(a1a2) = a1 da2 + a2 da1,

for all a1, a2 ∈ R. The elements of ΩR are called differential 1-forms on R. In general, for
m ∈ N, the set of differential m-forms on R is defined by the following alternating product:

Ωm
R = ∧m (ΩR) .

In particular, we have Ω0
R = R and Ω1

R = ΩR.
Form ∈ N, we now extend d : Ω0

R → Ω1
R to a k-linear map dm : Ωm

R → Ωm+1
R called the exte-

rior differential, defined in such a way that the following equality holds for all b, b1, . . . , bm ∈ R:

dm (bdb1 ∧ · · · ∧ dbm) = db ∧ db1 ∧ · · · ∧ dbm.

The family of maps (dm)m∈N has the property that dm+1 ◦ dm = 0 for all m ∈ N. Most of the
time, we shall omit the superscript from the notation and write d : Ωm

R → Ωm+1
R .

We can now define the de Rham complex of R over k as the following complex of k-vector
spaces:

0→ R
d0
−→ ΩR

d1
−→ · · · dm−1

−−−→ Ωm
R

dm−−→ Ωm+1
R

dm+1
−−−→ · · · .

The cohomology of this complex will be denoted by H•dR (R) and called the de Rham coho-
mology of R over k. In other words, for m ∈ N, we set Hm

dR (R) = Ker dm/ Im dm−1, where d−1

is understood as the zero map 0→ R.
Note that a map of k-algebras ϕ : R1 → R2 induces maps ϕ∗ : Ωm

R1
→ Ωm

R2
which are

compatible with the wedge product and which make the following diagram commute:
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· · · Ωm−1
R1

Ωm
R1 Ωm+1

R1
Ωm+2
R1

· · ·d d d

· · · Ωm−1
R2

Ωm
R2 Ωm+1

R2
Ωm+2
R2

· · ·d d d
ϕ∗ ϕ∗ ϕ∗ ϕ∗

As a consequence, ϕ also induces maps ϕ∗ : Hm
dR (R1) → Hm

dR (R2). Hence, algebraic de
Rham cohomology defines a functor from the category of k-algebras to the category of graded-
commutative k-algebras.

From now on, we will turn our attention to the central case, i.e. the case where R =
k [x1, . . . , xn] /I for some ideal I of k [x1, . . . , xn]. In this case, in agreement with our geo-
metric intuition, we shall allow ourselves to write Ωm

V and Hm
dR (V ) instead of Ωm

k[x1,...,xn]/I and
Hm

dR (k [x1, . . . , xn] /I), where V = V (I) is the vanishing locus of I.
The following proposition describes differential forms on affine varieties.

Proposition 2.1. Let I be an ideal of R = k [x1, . . . , xn]. For m ∈ N, we have:

Ωm
V (I) =

∑
16i1<···<im6n

(R/I) dxi1 ∧ · · · ∧ dxim .

Moreover, in the case where I = (0), the above sum is direct.

We can now compute the de Rham cohomology of the affine n-space.

Theorem 2.2 (Algebraic Poincaré Lemma). For m ∈ N, we have:

Hm
dR (kn) '

{
k if m = 0
0 if m > 1

.

Proof (adapted from [Har75]). First case: m = 0. We need to show that Ker d ⊆ k. We note
that, for 1 6 i 6 n, the k-linear derivation ∂

∂xi
: k [x1, . . . , xn] → k [x1, . . . , xn] induces a

k [x1, . . . , xn]-linear map ψi : Ωkn → k [x1, . . . , xn] such that ∂
∂xi

= ψi ◦ d (this is actually the
universal property of the Kähler differential). Therefore

Ker d ⊆
⋂

16i6n
Ker (ψi ◦ d) =

⋂
16i6n

Ker
(
∂

∂xi

)
= k.

Second case: m > 1. It suffices to show that Ker dm ⊆ Im dm−1 for m > 1. We shall argue
by induction on n, the idea being to try to integrate a closed differential form coordinate by
coordinate. The result is obvious when n = 0 (because in that case Ωm

kn = 0 for m > 1). Assume
the result has been proved for n− 1. Let ω ∈ Ker dm. We can write

ω = ω1 + dxn ∧ ω′,

where ω1 ∈ Ωm
kn and ω′ ∈ Ωm−1

kn are differential forms not involving dxn in the decomposition
given by Proposition 2.1. Thus

ω′ =
∑

16i1<···<im−16n−1
fi1,...,im−1 dxi1 ∧ · · · ∧ dxim−1 ,

for some fi1,...,im−1 ∈ k [x1, . . . , xn]. Consider

η =
∑

16i1<···<im−16n−1

(∫
fi1,...,im−1 dxn

)
dxi1 ∧ · · · ∧ dxim−1 ,
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where the symbol
∫

dxn refers to formal integration of polynomials with respect to the variable
xn. Hence

dm−1η = ω2 + dxn ∧ ω′,

where ω2 ∈ Ωm
kn is a differential form not involving dxn. As a consequence, we see that

ω − dm−1η = ω1 − ω2 =
∑

16i1<···<im6n−1
gi1,...,im dxi1 ∧ · · · ∧ dxim ,

for some gi1,...,im ∈ k [x1, . . . , xn]. But we know that dm
(
ω − dm−1η

)
= 0; if we look at the

terms involving dxn in this equality, we obtain ∂
∂xn

gi1,...,im = 0, which means that gi1,...,im ∈
k [x1, . . . , xn−1]. This proves that

ω − dm−1η ∈ Ωm
kn−1 .

By the induction hypothesis, since dm
(
ω − dm−1η

)
= 0, we conclude that there exists γ ∈ Ωm−1

kn−1

such that ω − dm−1η = dm−1γ, so ω = dm−1 (η + γ) ∈ Im dm−1.

We finish this section by giving an example to illustrate how the algebraic de Rham cohomol-
ogy of an affine variety can give insight into its topology.

a1

a2

a3

a4

· · ·

(x− a1) · · · (x− ad)y = 1

Figure 1: The complex curve {(x− a1) · · · (x− ad)y = 1} is isomorphic to the complex plane
punctured at d points and has the homotopy type of a bouquet of d circles.

Example. Consider a polynomial f(x) = (x− a1) · · · (x− ad) ∈ C[x] with simple roots and let
V = V (f(x)y − 1) ⊆ C2. Then H0

dR(V ) = C and the map ϕ : g ∈ C[x] 7−→ g(x)y dx ∈ H1
dR(V )

induces an isomorphism H1
dR(V ) ' C[x]/ (f) ' Cd. This agrees with the fact that V is a

Riemann surface isomorphic to C\ {a1, . . . , ad}, which has the homotopy type of a bouquet of d
circles.

2.2 Regularity hypotheses for polynomials

In order to study the de Rham cohomology of the affine variety V (f) = {x ∈ kn, f(x) = 0}
for some f ∈ k [x1, . . . , xn], we shall need some hypotheses to ensure that f is regular enough.
We shall define these hypotheses and give some examples of polynomials satisfying them.

Let ν1, . . . , νn ∈ N. We say that a polynomial f ∈ k [x1, . . . , xn] is homogeneous of degree d
with respect to the weights ν1, . . . , νn if it is of the form f (x1, . . . , xn) =

∑
λ∈Λ αλx

λ1
1 · · ·xλnn ,

where Λ ⊆ Nn is such that
∑n
i=1 νiλi = d for all λ ∈ Λ. This defines a grading on k [x1, . . . , xn]:

given weights ν1, . . . , νn, every polynomial in k [x1, . . . , xn] has a unique decomposition into ho-
mogeneous polynomials. This notion will allow us to weaken a little our hypotheses, by imposing
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conditions not directly on polynomials but on their homogeneous components with respect to
arbitrarily chosen weights. We will also need to extend this grading to differential forms by
defining the degree of b0 db1 ∧ · · · ∧ dbm to be

∑m
i=0 deg bi for all b0, . . . , bm ∈ k [x1, . . . , xn].

Proposition 2.3. Let g ∈ k [x1, . . . , xn] be a homogeneous polynomial with respect to the weights
ν1, . . . , νn. We denote by Jg =

(
∂g
∂x1

, . . . , ∂g
∂xn

)
the jacobian ideal of g. Then the following

assertions are equivalent:

(i) The k-vector space Mg = k [x1, . . . , xn] /Jg is finite dimensional.

(ii) The vanishing locus of Jg is the single point {0} ⊆ kn.

(iii) The radical of Jg is the ideal (x1, . . . , xn) ⊆ k [x1, . . . , xn].

If these conditions are satisfied, we say that g is homogeneous tame.

Proof. (i)⇒ (ii) Assume that there exists z = (z1, . . . , zn) ∈ V (Jg) \{0}. We may assume
that z1 6= 0. Since Jg is a homogeneous ideal with respect to the weights ν1, . . . , νn, this
implies that the line kz is included in V (Jg). But note that this line is the vanishing locus
of the prime ideal p = (z1x2 − z2x1, . . . , z1xn − znx1) ⊆ k [x1, . . . , xn]. In other words
V (Jg) ⊇ V (p). By the Nullstellensatz, this implies that

Jg ⊆
√
Jg ⊆

√
p = p.

Therefore, we have a surjection k [x1, . . . , xn] /Jg � k [x1, . . . , xn] /p ' k [x1]. As k [x1] is
infinite dimensional as a k-vector space, so is k [x1, . . . , xn] /Jg.

(ii)⇒ (iii) This is a direct consequence of the Nullstellensatz.

(iii)⇒ (i) Assume that
√
Jg = (x1, . . . , xn). Therefore, for all i ∈ {1, . . . , n}, there exists pi ∈ N

such that xpii ∈ Jg. Hence
Jg ⊇ (xp1

1 , . . . , x
pn
n ) .

Thus, we have a surjection k [x1, . . . , xn] / (xp1
1 , . . . , x

pn
n )� k [x1, . . . , xn] /Jg. Since the k-

vector space k [x1, . . . , xn] / (xp1
1 , . . . , x

pn
n ) is finite dimensional, so is k [x1, . . . , xn] /Jg.

We say that a polynomial f ∈ k [x1, . . . , xn] is tame if there exist weights ν1, . . . , νn such
that the homogeneous component of f of highest degree is homogeneous tame. Here are some
simple examples.

Example. (i) The monomial xd is tame in k [x]. Therefore, every polynomial of k[x] is tame.

(ii) If h ∈ k [x1, . . . , xn] is tame, then the hyperelliptic polynomial

f (x1, . . . , xn+1) = x2
n+1 + h (x1, . . . , xn) ∈ k [x1, . . . , xn+1]

is also tame.

Proof. (i) Note that
(
∂xd

∂x

)
=
(
xd−1

)
and therefore V (Jxd) = {0}.

(ii) Equip k [x1, . . . , xn] with weights ν1, . . . , νn s.t. h is homogeneous tame. For these weights,
denote by hd the homogeneous polynomial of highest degree in h. We set νn+1 = deg hd.
With respect to the weights 2ν1, . . . , 2νn, νn+1, the homogeneous polynomial of highest
degree in f is g (x1, . . . , xn+1) = x2

n+1 + hd (x1, . . . , xn). Now

Jg =
(
∂g

∂x1
, . . . ,

∂g

∂xn+1

)
=
(
∂hd
∂x1

, . . . ,
∂hd
∂xn

, xn+1

)
= Jhd + (xn+1) .

As hd is tame, V (Jhd) = {0} ⊆ kn, and therefore VJg = {0} ⊆ kn+1, so g is tame.
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z2 = x
(
x2 − 1

)
y z2 = x2 + y2 − 1

Figure 2: Real affine surfaces drawn using the Surfer program: on the left,
{
z2 = x

(
x2 − 1

)
y
}

has three singularities; on the right,
{
z2 = x2 + y2 − 1

}
is tame and nonsingular.

We will need a second regularity hypothesis.

Proposition 2.4. Let f ∈ k [x1, . . . , xn]. The following assertions are equivalent:

(i) The endomorphism of the k-vector space Mf = k [x1, . . . , xn] /Jf induced by multiplication
by f is invertible.

(ii) The vanishing locus of (f) + Jf is empty.

(iii) There exists a polynomial f̃ ∈ k [x1, . . . , xn] such that ff̃ ≡ 1 mod Jf .

If these conditions are satisfied, we say that f is nonsingular.

Proof. (iii)⇒ (i) Clear.

(i)⇒ (iii) If the endomorphism of the k-vector space Mf = k [x1, . . . , xn] /Jf induced by mul-
tiplication by f is invertible, then in particular 1 has a preimage, so there exists f̃ ∈
k [x1, . . . , xn] such that ff̃ ≡ 1 mod Jf .

(iii)⇒ (ii) Clear.

(ii)⇒ (iii) If V ((f) + Jf ) = ∅, then by the Nullstellensatz, the ideal
√

(f) + Jf contains the
constant polynomial 1 and so does the ideal (f) + Jf .

Example. (i) Every polynomial of k[x] with simple roots is nonsingular.

(ii) If h ∈ k [x1, . . . , xn] is nonsingular, then the hyperelliptic polynomial

f (x1, . . . , xn+1) = x2
n+1 + h (x1, . . . , xn) ∈ k [x1, . . . , xn+1]

is also nonsingular.

Proof. (i) If f(x) ∈ k[x] has simple roots, then gcd (f, f ′) = 1 and therefore there exist
u(x), v(x) ∈ k[x] such that f(x)u(x) + f ′(x)v(x) = 1. Hence f(x)u(x) ≡ 1 mod Jf .

(ii) We have Jf = Jh + (xn+1). Therefore Mf = k [x1, . . . , xn+1] /Jf ' k [x1, . . . , xn] /Jh =
Mh and the endomorphism of Mf induced by multiplication by f corresponds to the
endomorphism of Mh induced by multiplication by h.

8
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2.3 Towards the cohomology of affine varieties: de Rham’s Lemma

Our aim is now to show that, if f ∈ k [x1, . . . , xn+1] is sufficiently regular, then the affine
variety V (f) has trivial cohomology up to the order n−1. We start with the following technical
proposition, which describes the link between Ωm

V (I) = Ωm
k[x1,...,xn+1]/I and Ωm

kn+1 = Ωm
k[x1,...,xn+1]

for any ideal I ⊆ k [x1, . . . , xn+1].

Proposition 2.5. Let I be an ideal of R = k [x1, . . . , xn+1]. Then the k-linear map π : R→ R/I
induces maps π∗ : Ωm

kn+1 → Ωm
V (I) and we have

Ker
(
π∗ : Ωm

kn+1 → Ωm
V (I)

)
=
{
fω1 + dg ∧ ω2, f, g ∈ I, ω1 ∈ Ωm

kn+1 , ω2 ∈ Ωm−1
kn+1

}
.

Proof. The inclusion (⊇) is clear.
Let us prove (⊆). For m = 0, the lemma only affirms that the kernel of the projection

π : R→ R/I is I.
For m = 1, note that the map π∗ : Ω1

kn+1 → Ω1
V (I) is induced by the map π̂ :

⊕
f∈RR df →⊕

f∈R/I(R/I) df given by π̂ (g df) = π(g) d(π(f)). We write NR and NR/I for the respective
submodules of

⊕
f∈RR df and

⊕
f∈R/I(R/I) df defining Ω1

kn+1 and Ω1
V (I), as in Section 2.1.

Determining Kerπ∗ amounts to finding π̂−1
(
NR/I

)
. But we have

π̂−1
(
NR/I

)
= NR +

⊕
fI∈I

R dfI

+

⊕
f∈R

I df

 .
The result follows for m = 1.

Let m > 1. Note that the map π∗ : Ωm
kn+1 → Ωm

V (I) is the map on the alternating product
Ωm
kn+1 = ∧m

(
Ω1
kn+1

)
induced by π∗ : Ω1

kn+1 → Ω1
V (I). Going back to the definition of the

alternating product as a quotient of the tensor product and reasoning as in the case m = 1
yields the result.

Now that we have this proposition, we see that, for f ∈ k [x1, . . . , xn+1], the de Rham
complex of V (f) is similar to the following complex:

0 −→ Ω0
kn+1

df∧·−−−→ Ω1
kn+1

df∧·−−−→ · · · df∧·−−−→ Ωn
kn+1

df∧·−−−→ Ωn+1
kn+1 .

We are going to prove de Rham’s Lemma, which affirms that the above complex is an exact
sequence of k-vector spaces provided that f is tame.

The proof of de Rham’s Lemma will be by induction, and the tool which will make induction
possible is the notion of depth of an ideal. To define it, consider a noetherian ring R. A sequence
(ai)16i6q of elements of R such that ai is not a divisor of zero in R/ (a1, . . . , ai−1) for all 1 6 i 6 q
is called a regular sequence. If J is an ideal of R, the depth of J, denoted by depth (J), is
the maximal length of regular sequences of elements of J.

We will need to compute the depth of the jacobian ideal of a homogeneous tame polynomial.
Towards this aim, we shall show that depth is a geometric property of ideals, i.e. that depth (J)
only depends on V (J), or equivalently by the Nullstellensatz, that depth (J) = depth

(√
J
)
.

Proposition 2.6. Let R be a noetherian ring.

(i) A sequence (ai)16i6q is regular in R if and only if a1 is not a divisor of zero in R and the
sequence (ai)1<i6q is regular in R/ (a1).

(ii) If J is an ideal of R and a0 ∈ J is the first term of a regular sequence of J of maximal
length, then the depth of the ideal J of R/ (a0) is given by depth

(
J
)

= depth (J)− 1.

9
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Proof (adapted from [Mur06]). (i) This is an obvious consequence of the definition.

(ii) Let (ai)16i6q be a regular sequence of J of maximal length. By (i), we see that (ai)06i6q

is a regular sequence of J, so that depth (J) > q + 1 = depth
(
J
)

+ 1. Conversely, we
know by assumption that we can complete a0 to form a regular sequence (ai)06i6q of
J of maximal length. By (i), (ai)16i6q is a regular sequence of J, which shows that
depth

(
J
)
> q = depth (J)− 1.

Proposition 2.7. Let R be a noetherian ring.

(i) If (ai)16i6q is a regular sequence of R and (ξi)16i6q are elements of R such that ξ1a1 +
· · ·+ ξqaq = 0, then ξi ∈ (a1, . . . , aq) for all i ∈ {1, . . . , q}.

(ii) If (ai)16i6q is a regular sequence of R, then the sequence at1, a2, . . . , aq is also regular for
all t ∈ N∗.

(iii) If (ai)16i6q is a regular sequence of R, then
(
ati
)
16i6q is also regular for all t ∈ N∗.

(iv) For any ideal J of R, we have depth (J) = depth
(√

J
)
.

Proof (adapted from [Mur06]). (i) We use induction on q. If q = 1, then ξ1a1 = 0 implies
that ξ1 = 0 because a1 is not a divisor of zero. Assume that q > 1. The fact that
ξ1a1 + · · ·+ ξqaq = 0 implies that ξqaq ∈ (a1, . . . , aq−1). By regularity, ξq ∈ (a1, . . . , aq−1);
write ξq = λ1a1 + · · ·+ λq−1aq−1. Thus

(ξ1 + aqλ1) a1 + · · ·+ (ξq−1 + aqλq−1) aq−1 = 0.

By the induction hypothesis, ξi + aqλi ∈ (a1, . . . , aq−1) for all i, and so ξi ∈ (a1, . . . , aq).

(ii) We shall use induction on t. The result is obvious for t = 1. Let t > 1 and assume that
it has been proved that at−1

1 , a2, . . . , aq is regular. Since at−1
1 is not a divisor of zero in R,

neither is at1. We now need to prove that, for i > 1, ai is not a divisor of zero in the ring
R/
(
at1, a2, . . . , ai−1

)
. Let b ∈ R such that

aib ∈
(
at1, a2, . . . , ai−1

)
.

We write aib = ξ1a
t
1 +ξ2a2 + · · ·+ξi−1ai−1. In particular we have aib ∈

(
at−1

1 , a2, . . . , ai−1
)

and since at−1
1 , a2, . . . , aq is regular, we have

b ∈
(
at−1

1 , a2, . . . , ai−1
)
.

We write b = ζ1a
t−1
1 + ζ2a2 + · · ·+ ζi−1ai−1. Hence, we have

(ξ1a1 − aiζ1) at−1
1 + (ξ2 − aiζ2) a2 + · · ·+ (ξi−1 − aiζi−1) ai−1 = 0.

By (i), ξ1a1 − aiζ1 ∈
(
at−1

1 , a2, . . . , ai−1
)
. Thus, aiζ1 ∈ (a1, . . . , ai−1). But the sequence

a1, . . . , aq is regular so ζ1 ∈ (a1, . . . , ai−1) and b = ζ1a
t−1
1 + ζ2a2 + · · · + ζi−1ai−1 ∈(

at1, a2, . . . , ai−1
)
as required.

(iii) We shall use induction on q. The result is obvious for q = 1. For q > 1, we assume
that (ai)16i6q is regular. By (ii), at1, a2, . . . , aq is regular, so (ai)1<i6q is regular in the
ring R/

(
at1
)
by Proposition 2.6. By the induction hypothesis,

(
ati

)
1<i6q

is also regular in
R/
(
at1
)
and therefore

(
ati
)
16i6q is a regular sequence.

10
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(iv) Since any regular sequence of J is also a regular sequence of
√
J, we have depth (J) 6

depth
(√

J
)
. Now, (iii) implies that for any regular sequence of

√
J of length q, there

exists a regular sequence of J of length q, and therefore depth (J) = depth
(√

J
)
.

Corollary 2.8. Let g ∈ k [x1, . . . , xn+1] be a homogeneous tame polynomial. Then the depth of
the jacobian ideal Jg =

(
∂g
∂x1

, . . . , ∂g
∂xn+1

)
⊆ k [x1, . . . , xn+1] is at least n+ 1.

Proof. By assumption
√
Jg = (x1, . . . , xn+1). Now, the sequence (xi)16i6n+1 is a regular se-

quence of
√
Jg and therefore depth (Jg) = depth

(√
Jg
)
> n+ 1.

We are now ready to prove de Rham’s Lemma for homogeneous tame polynomials.

Lemma 2.9. Let R be a noetherian ring that is also a k-algebra such that the R-module Ω1
R

is free of rank n + 1, with basis (ε1, . . . , εn+1). Consider g ∈ R, denote by ∂g
∂x1

, . . . , ∂g
∂xn+1

the
coordinates of dg in the basis ε and set Jg =

(
∂g
∂x1

, . . . , ∂g
∂xn+1

)
⊆ R. Now, consider the following

sequence:
0 −→ Ω0

R
dg∧·−−−→ Ω1

R
dg∧·−−−→ · · · dg∧·−−−→ Ωn

R
dg∧·−−−→ Ωn+1

R ,

and write Hm = Ker
(
dg ∧ · : Ωm

R → Ωm+1
R

)
/ Im

(
dg ∧ · : Ωm−1

R → Ωm
R

)
.

(i) There exists an integer ν ∈ N such that, for 0 6 m 6 n, we have JνgHm = 0.

(ii) For 0 6 m < depth (Jg), we have Hm = 0. In particular, the above sequence is exact if
depth (Jg) > n+ 1.

Proof (adapted from [Sai76]). (i) Since R is noetherian and Ω1
R is finitely generated over R,

it suffices to show that for all i ∈ {1, . . . , n+ 1}, for all m ∈ {0, . . . , n} and for all ω ∈
Ker

(
dg ∧ · : Ωm

R → Ωm+1
R

)
, there exists ν ∈ N such that δνω ∈ Im

(
dg ∧ · : Ωm−1

R → Ωm
R

)
,

with δ = ∂g
∂xi

.
If δ is nilpotent, there is nothing to prove. Otherwise, we consider the localised ring Rδ.
Note that the ideal generated in Rδ by ∂g

∂x1
, . . . , ∂g

∂xn+1
is Rδ itself. We may therefore

complete the image of dg in Ω1
R ⊗R Rδ to form a free basis (dg, e1, . . . , en) of Ω1

R ⊗R Rδ.
Now let ω ∈ Ker

(
dg ∧ · : Ωm

R → Ωm+1
R

)
. In Ωm

R ⊗R Rδ, we may write

ω =
∑

16j1<···<jm6n
aj1,...,jmej1 ∧ · · · ∧ ejm +

∑
16j1<···<jm−16n

bj1,...,jm−1 dg ∧ ej1 ∧ · · · ∧ ejm−1 .

The fact that dg ∧ ω = 0 implies that aj1,...,jm = 0 for all 1 6 j1 < · · · < jm 6 n.
Therefore, we can write ω = dg ∧ η in Ωm

R ⊗R Rδ. This means that there exists ν ∈ N s.t.
δν (ω − dg ∧ η) = 0. Therefore, δνω ∈ Im

(
dg ∧ · : Ωm−1

R → Ωm
R

)
.

(ii) We use induction on m. For m = 0, the result means that a = 0 as soon as a dg = 0, which
is true because otherwise every element of Jg would be a divisor of zero, in contradiction
with depth (Jg) > m = 0. Assume the result has been proved for m − 1. Let a ∈ Jg
be the first term of a regular sequence of Jg of maximal length (this is possible because
depth (Jg) > m > 1). By (i), there exists ν ∈ N s.t. aνHm = 0. We may actually assume
that ν = 1 because aν is also the first term of a regular sequence of maximal length by
Proposition 2.7. For ω ∈ Ωm

R , we denote by ω the image of ω in Ωm
R⊗RR/(a). If dg∧ω = 0,

since aHm = 0, we can write
aω = dg ∧ η,

11
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for some η ∈ Ωm−1
R . Therefore dg ∧ η = aω = 0 in Ωm

R ⊗R R/(a). Since depth
(
Jg
)

=
depth (Jg) − 1 > m − 1 by Proposition 2.6, we may apply the induction hypothesis and
conclude that η = dg ∧ ϑ in Ωm−1

R ⊗R R/(a). In other words:

η = dg ∧ ϑ+ aζ,

with ϑ ∈ Ωm−2
R and ζ ∈ Ωm−1

R . As a consequence:

a (ω − dg ∧ ζ) = dg ∧ η − a dg ∧ ζ = dg ∧ dg ∧ ϑ = 0.

As a is not a divisor of zero in R, it follows that ω ∈ Im
(
dg ∧ · : Ωm−1

R → Ωm
R

)
.

Using Lemma 2.9 and Corollary 2.8, it is clear that de Rham’s Lemma is true for homogeneous
tame polynomials. We can now prove the general version.

Theorem 2.10 (De Rham’s Lemma). Let f ∈ k [x1, . . . , xn+1] be a tame polynomial. Then the
following sequence is exact:

0 −→ Ω0
kn+1

df∧·−−−→ Ω1
kn+1

df∧·−−−→ · · · df∧·−−−→ Ωn
kn+1

df∧·−−−→ Ωn+1
kn+1 .

Proof. Let 0 6 m 6 n. We shall prove by induction on degω, for ω ∈ Ωm
kn+1 , that if df ∧ ω = 0

then there exists ω0 ∈ Ωm−1
kn+1 such that ω = df ∧ ω0. If ω = 0, the result is clear. Otherwise, let

η ∈ Ωm
kn+1 and g ∈ k [x1, . . . , xn+1] be the respective homogeneous parts of ω and f of highest

degrees. The fact that df ∧ ω = 0 implies that

dg ∧ η = 0.

Using de Rham’s Lemma for homogeneous tame polynomials, we obtain the existence of η0 ∈
Ωm−1
kn+1 such that η = dg ∧ η0. Therefore, we can write

ω = df ∧ ω1 + ω2,

with ω1 ∈ Ωm−1
kn+1 , ω2 ∈ Ωm

kn+1 and degω2 < degω. By the induction hypothesis, since df∧ω2 = 0,
there exists ω′0 ∈ Ωm−1

kn+1 such that ω2 = df ∧ ω′0, and therefore ω = df ∧ (ω1 + ω′0).

2.4 De Rham cohomology of nonsingular tame varieties

With de Rham’s Lemma in hand, we are ready to compute the algebraic de Rham coho-
mology of nonsingular tame varieties, i.e. of affine varieties defined as the vanishing locus of a
nonsingular tame polynomial. We start with the following lemma. Somewhat unsatisfactorily,
it will be necessary to reinforce our regularity hypotheses: in [Mov19], the lemma is proved
for nonsingular tame polynomials in the case m = n, but we will need it for all 1 6 m 6 n,
and therefore we introduce a new condition, saying that a polynomial f ∈ k [x1, . . . , xn+1] is
strongly nonsingular if the endomorphism of the k-vector space Ωm+1

kn+1/ df ∧ Ωm
kn+1 induced

by multiplication by f is invertible for all 1 6 m 6 n. Note that strong nonsingularity is indeed
stronger than nonsingularity because we have an isomorphism

Ωn+1
kn+1/ df ∧ Ωn

kn+1 ' (k [x1, . . . , xn+1] /Jf ) dx1 ∧ · · · ∧ dxn+1,

and therefore if f is strongly nonsingular, then the endomorphism of k [x1, . . . , xn+1] /Jf induced
by multiplication by f is invertible, i.e. f is nonsingular.

Lemma 2.11. Let f ∈ k [x1, . . . , xn+1] be a strongly nonsingular tame polynomial. Let ω1 ∈
Ωm+1
kn+1 and ω2 ∈ Ωm

kn+1, with 1 6 m 6 n, such that

fω1 = df ∧ ω2.

Then there exist ω3 ∈ Ωm
kn+1 and ω4 ∈ Ωm−1

kn+1 such that

ω1 = df ∧ ω3 and ω2 = fω3 − df ∧ ω4.

12
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Proof (adapated from [Mov19]). We consider the canonical projection π : Ωm+1
kn+1 → Ωm+1

kn+1/df ∧
Ωm
kn+1 . We have

fπ (ω1) = π (fω1) = π (df ∧ ω2) = 0.

But multiplication by f is invertible as an endomorphism of Ωm+1
kn+1/ df ∧ Ωm

kn+1 because f is
strongly nonsingular; as a consequence ω1 ∈ Kerπ. Hence there exists ω3 ∈ Ωm

kn+1 s.t. ω1 =
df ∧ ω3. It follows that:

df ∧ (fω3 − ω2) = fω1 − df ∧ ω2 = 0.

By de Rham’s Lemma (Theorem 2.10), there exists ω4 ∈ Ωm−1
kn+1 s.t. fω3 − ω2 = df ∧ ω4. This

concludes the proof.

We can now prove the main theorem of this section. Note that, for n = 2 and m = 1, we
obtain a more precise statement of Theorem 1.1.

Theorem 2.12. Let f ∈ k [x1, . . . , xn+1] be a strongly nonsingular tame polynomial. Then for
all 1 6 m 6 n− 1, we have

Hm
dR (V (f)) = 0.

Proof. We consider the canonical projection π : k [x1, . . . , xn+1] → k [x1, . . . , xn+1] /(f), which
induces maps π∗ : Ωm

kn+1 → Ωm
V (f). We want to show that Hm

dR (V (f)) = 0, in other words

Ker
(
d : Ωm

V (f) → Ωm+1
V (f)

)
⊆ Im

(
d : Ωm−1

V (f) → Ωm
V (f)

)
.

To do this, we consider ω̂ ∈ Ker
(
d : Ωm

V (f) → Ωm+1
V (f)

)
and we choose an element ω ∈ π−1

∗ (ω) ⊆
Ωm
kn+1 . Our aim is to show that ω ∈ Im d+Kerπ∗. We have the following commutative diagram:

· · · Ωm−1
kn+1 Ωm

kn+1 Ωm+1
kn+1 · · ·d d d d

· · · Ωm−1
V (f) Ωm

V (f) Ωm+1
V (f) · · ·d d d d

π∗ π∗ π∗

Therefore dω ∈ Kerπ∗, which means, by Proposition 2.5, that there exist ω1 ∈ Ωm+1
kn+1 and

ω2 ∈ Ωm
kn+1 such that

dω = fω1 + df ∧ ω2 = f (ω1 − dω2) + d(fω2).

Setting ω′ = ω − fω2 ∈ ω + Kerπ∗ and ω′1 = ω1 − dω2 ∈ Ωm
kn+1 , we have

dω′ = fω′1.

As a consequence
0 = d2ω′ = df ∧ ω′1 + f dω′1.

By Lemma 2.11, there exist ω3 ∈ Ωm+1
kn+1 and ω4 ∈ Ωm

kn+1 such that

dω′1 = −df ∧ ω3 and ω′1 = fω3 − df ∧ ω4. (∗)

Thus
dω′ = fω′1 = f2ω3 − f df ∧ ω4 = f2

(
ω3 + 1

2 dω4

)
− d

(1
2f

2ω4

)
.

Setting ω′′ = ω′ + 1
2f

2ω4 ∈ ω + Kerπ∗ and ω′′1 = ω3 + 1
2 dω4 ∈ Ωm

kn+1 , we obtain

dω′′ = f2ω′′1 .

13
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Moreover, the equalities (∗) tell us that degω3,degω4 6 degω′1−deg f 6 degω′−2 deg f . Thus,
degω′′ 6 degω′ and degω′′1 < degω′1. Iterating this process, we show that for all k > 1, there
exist ω(k) ∈ ω + Kerπ∗ and ω(k)

1 ∈ Ωm
kn+1 such that

dω(k) = fkω
(k)
1 ,

and degω(k) 6 degω. With k large enough, we have degω(k) < k deg f therefore dω(k) = 0. By
the Algebraic Poincaré Lemma (Theorem 2.2), ω(k) ∈ Im d and therefore ω ∈ Im d + Kerπ∗.

3 Interlude: connectedness of real and complex affine varieties
Before going on with the study of the singular homology of complex affine varieties thanks

to Picard-Lefschetz Theory, we shall discuss another question related to the topology of affine
varieties, namely that of their connectedness properties. Our main aim will be to show that a
complex affine variety has only finitely many connected components for the Euclidean topology.
This is a result that bears interest in its own right, and from which we hope to draw some
consequences which will be useful later.

In most of this section it will not matter whether one is working over the real or complex
numbers, but there are some parts where we will need to use sign properties of real numbers;
therefore we will state all the results in the real and complex cases, and we will declare it when
we need real numbers, noting that a complex affine variety in Cn is also a real affine variety in
R2n, and hence topological results which hold for real affine varieties also hold for complex ones.
We will write K to denote either R or C.

3.1 Finiteness of the set of connected components

The foundation of all the finiteness results we are going to prove is Hilbert’s Basis Theorem,
according to which R [x1, . . . , xn] is a noetherian ring for any noetherian ring R (which is true
in particular if R is a field). Translating this theorem into a more geometric language yields the
following.

Proposition 3.1 (Descending Chain Condition). Let (Vn)n∈N be a descending sequence of affine
varieties in Kn:

V0 ⊇ V1 ⊇ · · · ⊇ Vn ⊇ · · · .

Then the sequence (Vn)n∈N is eventually constant: there exists n0 ∈ N such that for all n > n0,
Vn = Vn0.

Proof. For n ∈ N, write Vn = V (In), where In = I (Vn) ⊆ K [x1, . . . , xn]. The fact that
(V (In))n∈N is a descending sequence of subsets of Kn means that (In)n∈N is an ascending
sequence of ideals of K [x1, . . . , xn]. But the latter is a noetherian ring and therefore the sequence
(In)n∈N is eventually constant, and so is the sequence (Vn)n∈N.

Using the above principle, the first step will be to show that a zero-dimensional affine variety
is finite. To do this, we start by showing how to remove one point from such an affine variety,
and then we will apply the Descending Chain Condition.

Lemma 3.2. Let V ⊆ Kn be an affine variety and x0 ∈ V . Assume that there exist f1, . . . , fn ∈
I(V ) such that the matrix

(
∂fi
∂xj

(x0)
)

16i,j6n
is invertible. Then V \ {x0} is an affine variety.

Proof (adapted from [Mil68]). We may assume that x0 = 0. In this case, since f1, . . . , fn vanish
at 0, we may write, for all 1 6 i 6 n and for all x ∈ Kn,

fi (x1, . . . , xn) = gi1 (x1, . . . , xn)x1 + · · ·+ gin (x1, . . . , xn)xn,

14
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with gij ∈ K [x1, . . . , xn]. Now set W =
{
x ∈ Kn, det (gij(x))16i,j6n = 0

}
. Note that 0 6∈ W

because gij(0) = ∂fi
∂xj

(0) for all i, j. On the other hand, if x ∈ V \{0}, we have fi(x) = 0 for all
i, which can be rewritten as g11(x) · · · g1n(x)

... . . . ...
gn1(x) · · · gnn(x)


x1

...
xn

 = 0.

Since x 6= 0, this implies that det (gij(x))16i,j6n = 0, and therefore x ∈ W . Hence, we see that
V \{0} = V ∩W is an affine variety.

Proposition 3.3. Let V ⊆ Kn be an affine variety whose connected components are points.
Then V is a finite set.

Proof (adapted from [Mil68]). Let f1, . . . , fk ∈ K [x1, . . . , xn] such that V = V (f1, . . . , fk). We
claim that V contains a point x such that the matrix

(
∂fi
∂xj

(x)
)

16i6k
16j6n

has rank n. Indeed, if this

matrix had rank r < n for all x, then the set of points of V at which the matrix has maximal
rank rmax would be a submanifold of Rn of dimension n − rmax > 1, which contradicts the
fact that the connected components of V are points. Therefore, there exists x0 ∈ V such that
rk
(
∂fi
∂xj

(x0)
)

16i6k
16j6n

= n. Applying Lemma 3.2, we see that V \ {x0} is an affine variety.

So far, we have shown that we can remove a point from every nonempty affine variety whose
connected components are points and still get an affine variety. Therefore, by iterating this
process, we obtain a sequence

V ⊇ V1 ⊇ V2 ⊇ · · · ,

and this sequence is eventually constant by the Descending Chain Condition. This implies that
Vk = ∅ for some k, and therefore V is finite.

Given an affine variety V ⊆ Kn, we write Σ(V ) to be the set of singular points of V . To
define it formally, define the rank rkx(V ) of V at a point x ∈ V by

rkx(V ) = rk
(
∂f

∂xi
(x)
)
f∈I(V )
16i6n

.

Then Σ(V ) is the set of points x of V for which rkx(V ) is not maximal. Note that Σ(V ) is an
affine variety of Kn which can be defined using the minors of some jacobian matrices. Moreover,
V \Σ(V ) is a submanifold of Kn of codimension maxx∈V rkx(V ).

Now that we have treated the zero-dimensional case, we can prove that an affine variety has
only finitely many connected components.

Theorem 3.4. Let V ⊆ Kn be an affine variety. Then V has only finitely many connected
components for the Euclidean topology of Kn.

Proof (adapted from [Whi57]). We shall work in the real setting, i.e. K = R, and the theorem
will follow in the complex case. Were the theorem false, we could choose a real affine variety
V with an infinite number of connected components and such that any proper subvariety of V
has a finite number of connected components (otherwise we could produce an infinite strictly
decreasing sequence of affine varieties, in contradiction with the Descending Chain Condition).
Now V can be written as V = Σ(V ) ∪ M , where M = V \Σ(V ). Since Σ(V ) is a proper
subvariety of V , it has only finitely many connected components, and thus M has infinitely
many connected components, and M is in addition a submanifold of Rn of dimension d. We
may moreover assume that d > 1 because the case d = 0 is a consequence of Proposition 3.3.
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Let Γ be the set of connected components of M and let N0 ∈ Γ. Choose a point a ∈ Rn
not equidistant from all points of N0 and consider the following distance function, which is
polynomial because we are working over R:

ρa (x1, . . . , xn) = ‖x− a‖2 ∈ R [x1, . . . , xn] .

Given polynomials f1, . . . , fn−d ∈ R [x1, . . . , xn] and indices λ1, . . . , λn−d+1 ∈ {1, . . . , n}, consider
the jacobian polynomial

Φλ (f1, . . . , fk) =

∣∣∣∣∣∣∣∣∣
∂f1
∂xλ1

· · · ∂fn−d
∂xλ1

∂ρa
∂xλ1... . . . ...
...

∂f1
∂xλn−d+1

· · · ∂fn−d
∂xλn−d+1

∂ρa
∂xλn−d+1

∣∣∣∣∣∣∣∣∣ ∈ R [x1, . . . , xn] .

Now let V ′ be the affine variety defined by the ideal generated by I = I(V ) and the set of all
polynomials Φλ (f1, . . . , fn−d), with λ ∈ {1, . . . , n}n−d+1 and f1, . . . , fn−d ∈ I. In other words, V ′
is the set of singular points of the differentiable map ρa|M : M → R. Since ρa is not constant on
the connected manifold N0, the function ρa has regular points on N0 and so V ′ ( V . Therefore,
V ′ has only finitely many connected components. But on the other hand, for each connected
component N ∈ Γ of M , there exists at least one point yN of N minimising the distance to a
(because N is closed and nonempty); in particular yN is a singular point of ρa|M and therefore
yN ∈ V ′. This shows that V ′ is a proper subvariety of V intersecting each connected component
of V ; therefore V ′ has infinitely many connected components, a contradiction.

3.2 Decomposition into submanifolds

The results we are going to prove come from the need to show finiteness results for the set
of singularities of real or complex polynomials. This leads us to prove that any real or complex
affine variety can be written as the union of finitely many connected submanifolds of Kn. We
start by extending Theorem 3.4 to the set of regular points of an affine variety.

Lemma 3.5. Let V ⊆ Kn be an affine variety. Then the set V \Σ(V ) of regular points of V has
only finitely many connected components for the Euclidean topology of Kn.

Proof (adapted from [Mil68]). We shall work in the real setting, i.e. K = R, and the theorem
will follow in the complex case. Let f1, . . . , fk ∈ R [x1, . . . , xn] such that V = V (f1, . . . , fk)
and let g1, . . . , g` ∈ R [x1, . . . , xn] such that Σ(V ) = V (g1, . . . , g`). Setting p = g2

1 + · · · + g2
` ∈

R [x1, . . . , xn], we have Σ(V ) = V (p) (because we are working over R). Now consider the
polynomial

q (x1, . . . , xn+1) = p (x1, . . . , xn)xn+1 − 1 ∈ R [x1, . . . , xn+1] ,

and define
W = V (f1, . . . , fk, q) ⊆ Rn+1.

The set W is an affine variety of Rn+1, and it is diffeomorphic to V \Σ(V ) via the map
(x1, . . . , xn) 7→

(
x1, . . . , xn,

1
p(x1,...,xn)

)
. But as an affine variety, W has only finitely many

connected components for the Euclidean topology (by Theorem 3.4), and so does V \Σ(V ).

We can now decompose an affine variety into submanifolds of Kn.

Theorem 3.6. Let V ⊆ Kn be an affine variety. Then V can be expressed as a finite disjoint
union

V =
p⊔
i=1

Mi,

where each Mi is a connected smooth submanifold of Kn.
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Proof (adapted from [Mil68]). We set N1 = V \Σ(V ), N2 = Σ(V )\Σ (Σ(V )), etc. By the De-
scending Chain Condition (Proposition 3.1), the sequence V ⊇ Σ(V ) ⊇ Σ(Σ(V )) ⊇ · · · is
eventually constant, and therefore there exists q ∈ N such that Ni = ∅ for i > q. Therefore,
V =

⊔p
i=1Ni, and each Ni is a smooth submanifold of Kn, with finitely many connected compo-

nents by Lemma 3.5. Replacing each Ni by the union of its connected components, we obtain
the result.

x3 − 2xy + y2 = 0

Figure 3: Decomposition of a real affine curve into four connected submanifolds of R2.

3.3 Applications to finiteness results for singularities

Using what has been done above, we obtain the following theorem, which will not suffice for
applications, but which has the advantage of being fully general.

Theorem 3.7. Every polynomial f ∈ K [x1, . . . , xn] has only finitely many singular values.

Proof. Let V = V (f) and Σ = Σ(V ). By Theorem 3.6, we can write Σ =
⊔p
i=1Mi, where Mi

is a connected submanifold of Kn. For all i ∈ {1, . . . , p}, the map f|Mi
: Mi → K is smooth

and satisfies df|Mi
= 0; as Mi is connected, we conclude that f|Mi

is constant, say f|Mi
= γi.

Therefore, the set of singular values of f is given by

f (Σ) =
p⋃
i=1

f (Mi) = {γ1, . . . , γp} .

For later applications, we will actually need to show that the set of singular points is finite,
which is stronger than the above theorem. This is not true in general, but we can prove it
for tame polynomials, which were defined in Section 2.2. We now stop working over the real
numbers and we go back to an algebraically closed field k.

Proposition 3.8. Let f ∈ k [x1, . . . , xn] be a tame polynomial. Then the k-vector space

Mf = k [x1, . . . , xn] /Jf

is finite-dimensional, where Jf =
(
∂f
∂x1

, . . . , ∂f∂xn

)
is the jacobian ideal of f .

Proof. Consider weights ν1, . . . , νn such that, if f = f0 + · · · + fd with deg fk = k, then the
leading polynomial fd is homogeneous tame. Therefore, by definition, Mfd = k [x1, . . . , xn] /Jfd
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is finite-dimensional and we may therefore equip Mfd with a k-basis (b1, . . . , br) composed of
homogeneous polynomials only.

We claim that (b1, . . . , br) generates Mf = k [x1, . . . , xn] /Jf as a k-vector space. To prove
it, let h ∈ k [x1, . . . , xn]. We want to prove that h ∈ kb1 + · · · + kbr + Jf . Since (b1, . . . , br)
generates the k-vector space Mfd , there exist λ1, . . . , λr ∈ k and u1, . . . , un ∈ k [x1, . . . , xn] such
that

h =
r∑
j=1

λjbj +
n∑
i=1

ui
∂fd
∂xi︸ ︷︷ ︸

h′

. (∗)

If deg h′ > deg h, then the homogeneous equation of highest degree induced by (∗) does not
contain any term of h, and substracting it from (∗) allows us to decrease the degree of h′. We
may therefore assume that deg h′ 6 deg h. Thus

h =
r∑
j=1

λjbj +
n∑
i=1

ui
∂f

∂xi
+

n∑
i=1

d−1∑
k=0

(−ui)
∂fk
∂xi︸ ︷︷ ︸

h1

,

and deg h1 < deg h′ 6 deg h. We have shown that for every h ∈ k [x1, . . . , xn], there exists a
polynomial

h1 ∈ h+ kb1 + · · ·+ kbr + Jf ,

with deg h1 < deg h. Applying the same process to h1 and iterating, we obtain a sequence of
polynomials h1, h2, . . . with deg h > deg h1 > deg h2 > · · · such that h` ∈ h+kb1 + · · ·+kbr+Jf
for all `. But by finiteness of the degree, there exists ` > 1 such that h` = 0, so h ∈ kb1 + · · ·+
kbr + Jf . Therefore, (b1, . . . , br) generates the k-vector space Mf .

We then use the following lemma to translate the above algebraic fact into geometric lan-
guage.

Lemma 3.9. Let I be an ideal of k [x1, . . . , xn] such that k [x1, . . . , xn] /I is a finite-dimensional
k-vector space. Then the vanishing locus V (I) ⊆ kn is finite.

Proof. We shall write R = k [x1, . . . , xn].
We claim that every prime ideal containing I is maximal. Indeed, if p ⊇ I is a prime

ideal, then we have a surjective map R/I � R/p. Since R/I is finite-dimensional over k, so
is R/p. Therefore, R/p is a finite-dimensional k-algebra that is also an integral domain; as a
consequence, R/p is a finite field extension of k, so p is maximal.

Using the Nullstellensatz, the maximal ideals of R are the ideals (x1 − a1, . . . , xn − an) for
a = (a1, . . . , an) ∈ kn, and such a maximal ideal contains I if and only if a ∈ V (I). Therefore

√
I =

⋂
p prime
p⊇I

p =
⋂

m maximal
m⊇I

m =
⋂

a∈V (I)
(x1 − a1, . . . , xn − an) .

We now see that the k-linear map defined by ϕ : P ∈ R/
√
I 7−→ (P (a))a∈V (I) ∈ kV (I) is a

well-defined isomorphism. Therefore we have a surjection

R/I � R/
√
I ' kV (I).

Since R/I is a finite-dimensional k-vector space, so is kV (I) and hence V (I) is finite.

Proposition 3.10. Every tame polynomial f ∈ k [x1, . . . , xn] has only finitely many singular
points.

Proof. The set of singular points of f is V (Jf ). But by Proposition 3.8, the k-vector space
k [x1, . . . , xn] /Jf is finite-dimensional, so by Lemma 3.9, the set V (Jf ) is finite.
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4 Singular homology of complex affine varieties
Our goal is now to study the topology of complex affine varieties using entirely different

techniques: we shall compute the homology groups of nonsingular varieties using ideas which
date back from the works of Picard and Lefschetz. The main idea is that, if we want to study
the topology of the regular fibres of a holomorphic function, we should look at what happens
near singularities, and try to assemble the information we get from different singularities.

4.1 Homology of fibres near isolated nondegenerate singularities

By the Morse Lemma and the classification of complex quadratic forms, we know that, near
a nondegenerate singularity, any holomorphic function can be written up to biholomorphism as
f (z1, . . . , zn+1) = z2

1 + · · ·+z2
n+1. Therefore, we will start with the study of this example, which

will turn out to be foundational. We recall the notation LS = f−1(S) if f : X → Y is a map
and S ⊆ Y .

Proposition 4.1. Consider the following map:

f : (z1, . . . , zn+1) ∈ Cn+1 7−→ z2
1 + · · ·+ z2

n+1 ∈ C.

Let ε > 0 and Bε =
{
z ∈ Cn+1, ‖z‖ < ε

}
. Then for all 0 < ρ < ε2, if D = {z ∈ C, |z| = ρ}, we

have

Hm (Lρ) ' Hm+1 (LD, Lρ) '
{

0 if 1 6 m < n

Z if m = n
,

where the fibres are considered with respect to f|Bε .

Proof (adapted from [Lam81]). Note that we have the long exact homology sequence

· · · −→ Hm+1 (LD) −→ Hm+1 (LD, Lρ) −→ Hm (Lρ) −→ Hm (LD) −→ · · · ,

which yields the isomorphism Hm (Lρ) ' Hm+1 (LD, Lρ) for m > 1 after using the fact that LD
is contractible. Now, we have

Lρ =
{

(z1, . . . , zn+1) ∈ Cn+1,
n+1∑
i=1
|zi|2 < ε2,

n+1∑
i=1

z2
i = ρ

}
.

We shall show that Lρ is diffeomorphic to the disk bundle Qn of Sn, defined by

Qn =
{

(x, u) ∈ Rn+1 × Rn+1, ‖x‖ = 1, ‖u‖ < 1, 〈x, u〉 = 0
}
,

where ‖·‖ and 〈·, ·〉 denote the usual norm and scalar product in Rn+1. To construct the desired
diffeomorphism, set < (z) = (< (z1) , . . . ,< (zn+1)) for all z = (z1, . . . , zn+1) ∈ Cn+1 and likewise
for = (z). Thus

Lρ =
{
z ∈ Cn+1, ‖<(z)‖2 + ‖=(z)‖2 < ε2, ‖<(z)‖2 − ‖=(z)‖2 = ρ, 〈<(z),=(z)〉 = 0

}
.

Now, define σ =
√

1
2 (ε2 − ρ) and set

ϕ : z ∈ Lρ 7−→
( <(z)
‖<(z)‖ ,

=(z)
σ

)
∈ Qn and ψ : (x, u) ∈ Qn 7−→

√
σ2 ‖u‖2 + ρ · x+ iσu ∈ Lρ.

One easily verifies that ϕ and ψ are inverse diffeomorphisms, which proves that Lρ ' Qn. Now
the map (x, u) ∈ Qn 7→ x ∈ Sn defines a retraction from Qn to Sn. Therefore, we obtain

Hm (Lρ) ' Hm (Qn) ' Hm (Sn) '
{

0 if 1 6 m < n

Z if m = n
.
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δ

L1

δ

L 1
2

L0

Figure 4: Vanishing of the cycle δ on the fibre Lρ as ρ→ 0 (in complex dimension 1).

Let us try to understand geometrically what happens in complex dimension 1 (i.e. n = 1).
In this case, the nonsingular fibres are Riemann surfaces. The above proof shows that, for ρ 6= 0,
the fibre Lρ is diffeomorphic to the disk bundle Q1 of S1, which is actually a cylinder, and the
generating cycle δ of H1 (Lρ) corresponds to a cycle around the cylinder. For ρ = 0, L0 is a copy
of two complex lines with identified origins. As ρ goes to 0, the picture is as in Figure 4: the
cylinder is progressively pinched and the nontrivial cycle δ vanishes at ρ = 0. For this reason, δ
is called a vanishing cycle.

As mentioned above, the study of the example z 7→ z2
1 + · · · + z2

n+1 allows us to understand
what happens for any holomorphic function near a nondegenerate singularity, as stated by the
following corollary.

Corollary 4.2. Let f : Cn+1 → C be a holomorphic function with f(0) = 0, with a nondegener-
ate singularity at 0. If B ⊆ Cn+1 is a small enough (open) ball around 0 and D ⊆ C is a small
enough (closed) disk around 0 with ρ ∈ ∂D, we have

Hm (Lρ) ' Hm+1 (LD, Lρ) '
{

0 if 1 6 m < n

Z if m = n
,

where the fibres are considered with respect to f|B .

Proof. By the Morse Lemma, there exist an open ball B ⊆ Cn+1 around 0 and a diffeomorphism
ψ : V → B from an open subset of Cn+1 such that, for z = (z1, . . . , zn+1) ∈ V ,

f ◦ ψ(z) = z2
1 + · · ·+ z2

n+1.

Therefore, we have an isomorphism Hm (Lρ) ' Hm

(
(f ◦ ψ)−1 (ρ)

)
and in the same manner

Hm+1 (LD, Lρ) ' Hm+1
(
(f ◦ ψ)−1 (D), (f ◦ ψ)−1 (ρ)

)
. The result follows from Proposition 4.1.

4.2 Lifting retractions

We now need a few technical results that will help us lift retractions of subsets of C to
retractions of the fibres over these subsets. The following theorem has a great importance in
the study of nonsingular fibres; in particular, it implies that all nonsingular fibres of a proper
smooth function are diffeomorphic.

Theorem 4.3 (Ehresmann’s Fibration Theorem). Let φ : E → B be a smooth map between two
manifolds. Assume that φ is a submersion and that φ is proper. Then φ : E → B is a smooth
fibre bundle.
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Proof. See [Ehr52].

We will also use the following theorem, which will allow us to lift homotopies in fibre bundles.

Theorem 4.4 (Covering Homotopy Theorem). Let p1 : E1 → B1 and p2 : E2 → B2 be two
fibre bundles with the same fibre and group. We assume that the space B1 is normal, locally
compact and such that any open covering of B1 is reducible to a countable covering. Consider a
bundle map (E1, B1)→ (E2, B2), i.e. a pair of maps h0 : E1 → E2, h0 : B1 → B2 such that the
following diagram commutes:

E1 E2
h0

B1 B2
h0

p1 p2

If H : [0, 1] × B1 → B2 is a homotopy with H (0, ·) = h0, then there exists a homotopy H :
[0, 1]×E1 → E2 with H (0, ·) = h0 whose induced homotopy is H and such that H is stationary
with H: for each x1 ∈ E1 and for each interval [t1, t2] ⊆ [0, 1] such that H (p (x1) , t) is constant
for t ∈ [t1, t2], then H (x1, t) is constant for t ∈ [t1, t2].

Proof. See [Ste51].

We define the notion of retraction. If A ⊆ R ⊆ S are topological spaces, a retraction from
S to R over A is a continuous map r : [0, 1]× S → S such that:

(i) r(0, ·) = idS ,

(ii) r(1, x) ∈ R for all x ∈ S and r(1, x) = x for all x ∈ R,

(iii) r(·, x) = x for all x ∈ A.

A retraction from S to R is a retraction from S to R over R.

We are now ready to lift retractions using Ehresmann’s Fibration Theorem and the Homotopy
Covering Theorem.

Proposition 4.5. Let f : Y → B be a proper smooth map between manifolds. Let C be the
set of singular values of f in B. Consider A ⊆ R ⊆ S ⊆ B such that S ∩ C is included in the
interior of A in S. Then every retraction from S to R over A can be lifted to a retraction from
LS to LR over LA.

Proof (adapted from [Mov19]). By Ehresmann’s Fibration Theorem, f : LS\C → S\C is a
smooth fibre bundle. Now, consider a retraction r : [0, 1]× S\C → S\C from S\C to R\C over
A\C. As r (0, ·) = idS , we may apply the Covering Homotopy Theorem with E1 = E2 = LS\C ,
B1 = B2 = S\C and H = r, to obtain a homotopy r : [0, 1] × LS\C → LS\C . This homotopy
will then be a retraction from LS\C to LR\C over LA\C . Since S ∩ C is included in the interior
of A in B, we can extend r to a retraction from LS to LR over LA by setting r (·, a) = a for all
a ∈ LA.

4.3 Assembling singularities

In Section 4.1, we computed the homology of the regular fibres of a holomorphic function
with only one nondegenerate singular point. We can now understand what happens when we
have several nondegenerate singular points, thanks to the following lemma, which will also come
useful later, after we have treated degeneracy.
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Lemma 4.6. Let f : Cn+1 → C be a holomorphic function with isolated singular values. We
denote by C the set of singular values of f . Let β ∈ C\C. Then for every singular value c ∈ C,
we can choose a small (closed) disk Dc around c and an element bc ∈ ∂Dc such that, for all
m > 1,

Hm (Lβ) ' Hm+1
(
Cn+1, Lβ

)
'
⊕
c∈C

Hm+1 (LDc , Lbc) .

Proof (adapted from [Mov19]). For c ∈ C, consider a small (closed) disk Dc around c and a path
λc from β to c intersecting ∂Dc at bc and set Kc = Dc ∪ λc (see Figure 5). Set

K =
⋃
c∈C

Kc.

C

f

β

c1

bc1

Dc1

λc1

c3

bc3

Dc3

λc3

c2

bc2

Dc2

λc2

Figure 5: Decomposing the homology of
(
Cn+1, Lβ

)
.

There is a retraction from C to K so Proposition 4.5 implies that

Hm

(
Cn+1, Lβ

)
= Hm (LC, Lβ) ' Hm (LK , Lβ) .

If λ′c is the path consisting of λc started at β but stopped at bc, we have a retraction from
λ′ =

⋃
c∈C λ

′
c to {β} (and this retraction extends to a retraction from K to itself). Applying

Proposition 4.5 again, we obtain

Hm

(
Cn+1, Lβ

)
' Hm (LK , Lβ) ' Hm (LK , Lλ′) .

We then use the Excision Property to remove all the paths λ′c stopped a bit before bc, and after
another retraction to bc, we obtain

Hm

(
Cn+1, Lβ

)
' Hm (LK , Lλ′) ' Hm

(⊔
c∈C

LDc ,
⊔
c∈C

Lbc

)
'
⊕
c∈C

Hm (LDc , Lbc) .

Using the fact that Cn+1 is contractible and writing the long exact homology sequence of the
pair

(
Cn+1, Lβ

)
, we have

Hm (Lβ) ' Hm+1
(
Cn+1, Lβ

)
'
⊕
c∈C

Hm+1 (LDc , Lbc) .

The above lemma, together with Corollary 4.2, gives us full understanding of the homology
of regular fibres of holomorphic Morse functions, i.e. holomorphic functions f : Cn+1 → C
satisfying the following conditions:
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(i) Every singular point of f is nondegenerate,

(ii) The restriction of f to the set of singular points is injective.

Corollary 4.7. Let f : Cn+1 → C be a Morse function with isolated singularities. If C is the
set of singular values of f and β ∈ C\C, then

Hm (Lβ) ' Hm+1
(
Cn+1, Lβ

)
'
{

0 if 1 6 m < n⊕
c∈C Z if m = n

.

Proof. Applying Lemma 4.6 gives Hm (Lβ) =
⊕
c∈C Hm+1 (LDc , Lbc). Now, for c ∈ C, we may

apply Corollary 4.2 after having chosen a small ball around the only singular point of f in the
fibre f−1(c). The result follows.

4.4 Treatment of degenerate singularities and proof of the main theorem

To motivate the ideas of this section, we recall the following theorem from one-variable complex
analysis.

Theorem 4.8. Let f : U → C be a nonconstant holomorphic function defined on an open
neighbourhood U of 0 in C and such that f(0) = 0. Consider

k = min
{
` > 1, f (`) (0) 6= 0

}
.

Then f is k-to-one around 0: there exists an open neighbourhood V ⊆ U of 0 such that f(V ) is
an open neighbourhood of 0 and for all w ∈ f(V )\{0}, the set f−1 ({w}) ∩ V has cardinal k.

The above theorem shows that, for a holomorphic function f in one variable with an isolated
singularity at the origin, moving away from the singularity turns the fibres into discrete sets
of points which are regular with respect to f . For multivariate functions, the principle will be
similar: whenever we have an isolated degenerate singularity, we can move away slightly from
this singularity and the fibres will split into several nondegenerate singularities.

Lemma 4.9. Let f : Cn+1 → C be a holomorphic function with f(0) = 0, with a possibly
degenerate singularity at 0. If B ⊆ Cn+1 is a small enough (open) ball around 0 and D ⊆ C is
a small enough (closed) disk around 0 with ρ ∈ ∂D, we have

Hm (Lρ) ' Hm+1 (LD, Lρ) '
{

0 if 1 6 m < n⊕
λ∈Λ Z if m = n

,

for some set Λ, where the fibres are considered with respect to f|B .

Proof (adapted from [AGZV88]). The idea is to perturbate f with a small linear form to obtain
a Morse function and apply Corollary 4.7.

Step 1 : We claim that there exist vectors u ∈ Cn+1 which are arbitrarily small and such
that the function fu : z 7→ f(z)−〈u, z〉 is Morse. Indeed, the singular points of fu are the points
z ∈ B such that ∇f(z) = u, and they are degenerate if and only if z is a singular point of ∇f
(and in this case, u is a singular value of ∇f). It follows that, if u is a regular value of ∇f , then
fu has only nondegenerate singular points. But by Sard’s Theorem, the set of singular values
of ∇f has zero measure (for the Lebesgue measure), in addition to being open. Therefore, after
having chosen a certain regular value u of ∇f (which we may choose arbitrarily close to 0), we
may perturbate u by an arbitrarily small vector in such a way that fu is injective on its set of
singular points, and therefore is a Morse function.

Step 2 : We choose u0 ∈ Cn+1 such that fu0 is Morse, and we claim that f−1
u0 (ρ) remains

diffeomorphic to f−1 (ρ) for ρ sufficiently small. We may assume that u0 6= ∇f(0), i.e. that 0 is
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a regular point of fu0 (and therefore 0 is a regular value of fu0 after possibly shrinking B). We
now want to apply Ehresmann’s Fibration Theorem to the map

F : (z, u) ∈ B × Cn+1 7−→ (fu(z), u) ∈ C× Cn+1.

We note that
dF (z, u) · (h,w) = (〈∇f(z)− u, h〉 − 〈z, w〉 , w) ,

therefore, (z, u) is a regular point of F if and only if ∇f(z) 6= u i.e. if and only if z is a regular
point of fu. We have assumed that 0 is a regular value of fu0 , so we can choose a sufficiently
small ρ that is a regular value of fu0 . Then ρ will also be a regular value of f = f0 by assumption
on f . Hence, (ρ, u0) and (ρ, 0) are two regular values of F . By Ehresmann’s Fibration Theorem
(Theorem 4.3), F−1 (ρ, u0) is diffeomorphic to F−1 (ρ, 0) and therefore f−1

u0 (ρ) is diffeomorphic
to f−1 (ρ). Therefore, we have an isomorphism Hm

(
f−1 (ρ)

)
' Hm

(
f−1
u0 (ρ)

)
for all m, and we

can conclude using Corollary 4.7.

We finally obtain this section’s main theorem, which gives us the homology of regular fibres
of holomorphic functions, and which we will wish to apply to the special case of polynomials.

Theorem 4.10. Let f : Cn+1 → C be a holomorphic function with isolated singularities. If β
is a regular value of f , then

Hm (Lβ) '
{

0 if 1 6 m < n⊕
λ∈Λ Z if m = n

,

for some set Λ.

Proof. Apply Lemma 4.6 and Lemma 4.9.

Applying Theorem 4.10 and using the finiteness of the set of singular points for tame polyno-
mials (Proposition 3.10), we obtain the following result, which implies Theorem 1.2 when n = 2
and m = 1.

Theorem 4.11. If f ∈ C [x1, . . . , xn+1] is a nonsingular tame polynomial, then

Hm (V (f)) =
{

0 if 1 6 m < n

Zµ if m = n
,

where µ ∈ N is the Milnor number of V (f).

Proof. The only thing that remains to prove is that Hn (V (f)) is finitely generated. For every
singular point of f , the proof of Lemma 4.9 perturbates f by a linear function; the resulting
Morse function is therefore a polynomial and has a finite number of critical values by Theorem
3.7. The application of Corollary 4.7 shows therefore that the homology near each singular
value is finitely generated. Since f has a finite number of singular values, Hn (V (f)) is finitely
generated.

5 Conclusion: at the junction of two paths
Two very different paths – the first one was algebraic, the second one was topological – have led

us to similar results about the topology of complex affine varieties. The first result is Theorem
2.12, stating that the algebraic de Rham cohomology of tame nonsingular varieties of dimension
n is trivial except at the order n, a generalisation of Picard’s Theorem 1.1. The second result is
Theorem 4.11, which affirms that the singular homology of nonsingular varieties of dimension n
is trivial except at the order n, a generalisation of Picard’s Theorem 1.2. We would now like to
make these two paths meet; we shall show that the two theorems we have proved are equivalent
and that they are therefore two faces of a single phenomenon.
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The first thing we need is a classical fact relating singular homology and cohomology.

Theorem 5.1 (Universal Coefficient Theorem). Let X be a topological space and let G be an
arbitrary abelian group. Then there exists a split exact sequence

0 −→ Ext (Hm−1(X), G) −→ Hm (X;G) −→ Hom (Hm (X) , G) −→ 0.

Proof. See [Mas80].

Applying the Universal Coefficient Theorem with G = C, the Ext term in the exact sequence
is zero because C is a divisible group; this implies that Hm (X;C) ' Hom (Hm(X),C). The
following step is the crucial one, which creates a link between the world of topology and that of
algebra. It is a result of Grothendieck, following works of Atiyah and Hodge; the three of them
can be considered to be the pioneers of algebraic de Rham cohomology.

Theorem 5.2 (Grothendieck). Let X be a complex nonsingular affine variety. Then the complex
cohomology H• (X;C) can be calculated as the cohomology of the algebraic de Rham complex.

Proof. See [Gro66].

Corollary 5.3. Let X be a complex nonsingular affine variety. Then there is an isomorphism

Hm
dR (X) ' Hom (Hm(X),C) .

This report’s two main theorems are therefore dual results. We have proved the same fact
twice, using algebraic techniques first, and then ideas from Picard-Lefschetz Theory. This gives
an insight into the wide diversity of methods that can be used to study the topology of algebraic
varieties, exploiting the fact that the objects of algebraic geometry lie at the intersection of
several different worlds.
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