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Suppose that we have a loop γ : S1 → M on a 3-manifold M and assume
that γ is null-homotopic. This means that there is a map f : D2 → M with
f|S1 = γ, where D2 is the 2-dimensional disc, with ∂D2 = S1. The general
problem that we are concerned with is, assuming that γ is regular enough, to
upgrade f to a regular map. More specifically, we would like to answer the
following:

Question 1. If γ : S1 ↪→ M is a null-homotopic embedded loop, is there an
embedding f : D2 ↪→M such that f|S1 = γ?

Remark 2. If M is a surface, then the Jordan-Schönflies Theorem gives an
affirmative answer to Question 1.

Dehn’s Lemma, the Loop and Sphere Theorems

For 3-manifolds, an answer to Question 1 is given by Dehn’s Lemma:

Lemma 3 (Dehn’s Lemma [Deh10]). Let f : D2 → M be a map that restricts
to an embedding on some neighbourhood of ∂D2 = S1. Then f|S1 : S1 → M
extends to an embedding D2 ↪→M .

Dehn’s original proof had a gap, but this was fixed by Papakyriakopoulos
with the Loop and Sphere Theorems. We give a stronger version of the Loop’s
Theorem, due to Stallings:

Theorem 4 (Loop Theorem [Pap57, Sta60]). Let M be a 3-manifold and let
B be a connected component of ∂M . Let N be a normal subgroup of π1B. If
Ker (π1B → π1M) 6⊆ N , then there is an embedding

g :
(
D2, S1

)
↪→ (M,B)

such that
[
g|S1

]
6∈ N .

We first explain why the Loop Theorem implies Dehn’s Lemma:
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Proof (Loop⇒ Dehn). Let f : D2 →M be a map that restricts to an embedding
on some neighbourhood of ∂D2 = S1. Consider R a regular neighbourhood of
f(S1) in M , and let

M1 = M rR.

Hence M1 is a 3-manifold, with boundary homeomorphic to the 2-torus T 2.
Apply the Loop Theorem to M1, with N = 1, B = ∂M1

∼= T 2. Note that
π1B ∼= Z2, with basis {a, b}, where a and b are represented by simple closed
curves on B, with a =

[
f|S1

]
. In particular, the existence of the map f : D2 →

M shows that a maps to 1 under π1B → π1M1. Hence, the Loop Theorem gives
an embedding

g :
(
D2, S1

)
↪→ (M,B)

such that
[
g|S1

]
6= 1. Set c =

[
g|S1

]
∈ π1B, and write c = ka + `b, with

k, ` ∈ Z. Since a and c map to 1 in π1M1 and b does not, we must have ` = 0.
Moreover, c admits a simple closed curve representative in B, from which it
follows that k = ±1. After possibly changing orientations, we may assume that
k = 1, proving that

[
g|S1

]
=
[
f|S1

]
. After performing a homotopy in B, we

obtain the result.

Papakyriakopoulos also proved the following:

Theorem 5 (Sphere Theorem). Let M be an orientable 3-manifold, and let
N � π2M be a proper π1M -invariant subgroup. Then there is an embedding
g : S2 ↪→M such that [g] 6∈ N .

Remark 6. The action of the fundamental group on higher homotopy groups
is illustrated in Figure 1, interpreting πn(M,x) as the set of homotopy classes of
maps (Dn, ∂Dn) → (M,x). In particular, if n = 1, then we recover the action

f ∈ πn(M,x)

x

(Dn, ∂Dn)

α ∈ π1(M,x)
f x α x

(Dn, ∂Dn)

Figure 1: The action π1(M,x) y πn(M,x).

of π1(M,x) by conjugation on itself.

Applying the Sphere Theorem with N = 1 yields a corollary worth stating
separately:

Corollary 7. Let M be an orientable 3-manifold. If π2M 6= 1, then there is an
embedding S2 ↪→M that is not null-homotopic.
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Our goal for this talk is to give the main ideas of the proof of the Loop
Theorem (in the case N = 1). We will follow [Hat07] and [Sta60].

The tower argument

Proof of Theorem 4 (for N = 1). Start with a map f :
(
D2, S1

)
→ (M,∂M)

with
[
f|S1

]
6= 1 in π1B. The goal is to upgrade f to an embedding.

The strategy is to construct a tower : starting with f0 = f : D2 →M , pick a
regular neighbourhood V0 of D0 = Im f0 in M0 = M . Then take a (connected)
2-sheeted cover p1 : M1 → V0. Since D2 is simply-connected, f0 lifts to a map
f1 : D2 →M1. Now pick a regular neighbourhood V1 of D1 = Im f1 in M1, and
repeat the construction. One obtains the following commutative diagram:

D2 D0 V0 M0

f0
↪−−−→ ↪−−−→

D1 V1 M1

f1

↪−−−→ ↪−−−→
p1

Dn Vn Mn

fn

↪−−−→ ↪−−−→

...
...

...

pn

= Im f

= M

(1)

Each Vi is a regular neighbourhood of Di = Im fi, and each pi+1 : Mi+1 → Vi
is a (connected) 2-sheeted cover.

Claim. The tower construction eventually terminates.

Proof. The idea is to measure the singularity of the maps fi, and show that this
becomes smaller at each step.

Given a (set-theoretic) map f : X → Y , the singularity of f is the set

S(f) = {(x1, x2) ∈ X ×X | f (x1) = f (x2)} .

Observe that, given a commutative diagram

X

X

X

f

g
p

we have S(f) ⊆ S(g), with equality if and only if the restriction of p to Im f is
injective.

Therefore, we have a chain of proper inclusions

· · · ( S (fi+1) ( S (fi) ( · · · ( S (f1) ( S (f0) .
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For now, this is no more than a chain of closed subsets of D2 ×D2, so it could
decrease indefinitely. To make the inductive argument work, we need to make
the situation discrete. To do this, we triangulate the manifold M and the disc
D2 in such a way that the map f : D2 → M is simplicial, and we perform the
construction of the tower in such a way that all resulting spaces and maps are
simplicial.

Therefore, (S (fi))i≥0 is a strictly descending chain of subcomplexes of D2×
D2, so it is eventually constant and the construction must terminate.

Now we have a finite tower as in (1). The next step is to see that, at the
top of tower, the topology has become simpler and we can show there that
fn : D2 →Mn is an embedding.

Lemma 8. Let M be a compact 3-manifold that has no connected 2-sheeted
cover. Then every component of ∂M is a 2-sphere.

Proof. Note that connected 2-sheeted covers of M correspond to maps π1M →
Z/2, which correspond to maps H1 (M ;Z/2) → Z/2. Hence, the assumption
that M has no connected 2-sheeted cover means that

H1 (M ;Z/2) = 0.

By Poincaré-Lefschetz Duality and the Universal Coefficient Theorem, it follows
that H2 (M,∂M ;Z/2) ∼= H1 (M ;Z/2) = 0. Therefore, the long exact sequence
of (M,∂M) is

· · · → H2 (M,∂M ;Z/2)
=0

→ H1 (∂M ;Z/2)→ H1 (M ;Z/2)
=0

→ · · · .

It follows that H1 (∂M ;Z/2) = 0. Since the only compact connected surface Σ
with H1 (Σ;Z/2) = 0 is the 2-sphere, it follows that every component of ∂M is
a 2-sphere.

Hence, every component of ∂Mn is a 2-sphere. Now consider the preimage
of ∂M0 inside Mn. This is a planar surface F , so its fundamental group is
generated by some loops in ∂F . One of these loops must be nontrivial in π1F
(because of the assumption that

[
f|S1

]
6= 1 in π1B), and this loop bounds an

embedded disc in ∂Vn. This yields an embedding

g(n) :
(
D2, S1

)
↪→ (Mn, F )

with
[
g
(n)
|S1

]
6= 1 in π1F .

We have an embedding at the top of the tower; the final step is to descend
back to M0. At each step of the tower, we produce at most double singularities,
and they can be eliminating by some surgery operations. See [Hat07] or [Sta60]
for more details. In the end, we obtain an embedding

g(0) :
(
D2, S1

)
↪→ (M,B)

with
[
g
(0)
|S1

]
6= 1 in π1B.
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Application of the Loop Theorem

We conclude with a simple application of the Loop Theorem to the classification
of 3-manifolds. We are interested in classifying all prime 3-manifolds, and the
following classifies those that have infinite cyclic fundamental group:

Proposition 9. LetM be an orientable compact connected 3-manifold. Assume
thatM is prime and π1M ∼= Z. ThenM ∼= S1×S2 (if ∂M = ∅) orM ∼= S1×D2

(if ∂M 6= ∅).

Proof. Case 1: ∂M 6= ∅. Note that the only prime 3-manifold with a spher-
ical boundary component is B3 (which has π1B

3 = 1), so ∂M contains no
2-sphere. Moreover, dimH1 (M ;Q) = 1, so Poincaré-Lefschetz Duality and the
Universal Coefficient Theorem give dimH2 (M,∂M ;Q) = dimH1 (M ;Q) = 1.
Now consider the following commutative diagram, with vertical arrows given by
Poincaré-Lefschetz Duality:

· · · H2 (M,∂M ;Q) H1 (∂M ;Q) H1 (M ;Q) · · ·

· · · H1 (M ;Q) H1 (∂M ;Q) H2 (M,∂M ;Q) · · ·

PD

∼=

PD

∼=

PD

∼=

∂ i∗

i∗ δ

Observe that

rk ∂ = dim Im ∂ = dim Ker i∗ = dim Coker i∗ = dim Coker ∂

= dimH1 (∂M ;Q)− rk ∂.

Therefore

dimH1 (∂M ;Q) = 2 rk ∂ ≤ 2 dimH2 (M,∂M ;Q) = 2.

It follows that ∂M is a 2-torus. In particular, the map π1 (∂M)→ π1M is not
injective, so the Loop Theorem gives an embedding

g :
(
D2, S1

)
↪→ (M,∂M)

with
[
g|S1

]
6= 1 in π1 (∂M). Cutting M along g

(
D2
)

yields a splitting

M = N]
(
S1 ×D2

)
.

But M is prime, so N ∼= S3.
Case 2: ∂M = ∅. Then we need the

Fact. Every class in H2(M) is represented by an embedded oriented closed
surface Σ→M , with every component of Σ mapping to M π1-injectively.

By Poincaré Duality and the Universal Coefficient Theorem, we have

H2(M) ∼= H1(M) ∼= H1(M) ∼= Z.
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Hence pick a class in H2(M) r 0, and represent it by an embedded oriented
closed surface Σ→M where each component is π1-injective. But π1M ∼= Z, so
each component of Σ is a 2-sphere. Again, this gives a splitting

M = N]
(
S1 × S2

)
,

and M is prime, so N ∼= S3.
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