L^2 -Betti numbers

Reading seminar

Kyoto University

Spring 2025

Contents

1	Background on von Neumann dimension		
	1.1	Motivation	1
	1.2	Hilbert <i>G</i> -modules	2
	1.3	Background on von Neumann algebras	3
	1.4	The group von Neumann algebra and its trace	4
	1.5	Von Neumann dimension	6
2	L^2 -homology and L^2 -Betti numbers		
	2.1	Eilenberg–MacLane space and finiteness properties	9
	2.2	Definition of L^2 -Betti numbers	10
	2.3	Basic properties	12
	2.4	Some examples	14

Week 1 – Background on von Neumann dimension

Speaker: Alexis Marchand. References: [1, Chapter 2], [2], [4, Chapter 1], [3, §1.1].

1.1 Motivation

The goal of what follows is to develop a good *equivariant* homology theory for actions $G \curvearrowright X$ of groups on topological spaces. The usual singular chain complex $C_*^{\text{sing}}(X; \mathbb{C})$ and singular homology $H_*(X; \mathbb{C})$ inherit a *G*-action, so they have the structure of $\mathbb{C}G$ -modules. However, the group *G* is typically infinite and we do not have a good notion of dimension for modules over $\mathbb{C}G$. This is why we will work in an L^2 setting.

We will introduce a homology theory $H^{(2)}_*(G \curvearrowright X)$, together with associated Betti numbers $b^{(2)}_*(G \curvearrowright X)$. They will be well-defined when X is a G-CW-complex under a certain finiteness property.

In the first talk, we introduce the relevant notions around Hilbert modules and von Neumann dimension that will allow us to define L^2 -Betti numbers.

1.2 Hilbert *G*-modules

We fix a countable group G. We will work with \mathbb{C} -coefficients throughout.

Definition 1.1. The group ring of G over \mathbb{C} is the \mathbb{C} -algebra $\mathbb{C}G$ (or $\mathbb{C}[G]$), with underlying \mathbb{C} -vector space

$$\mathbb{C}G \coloneqq \bigoplus_{g \in G} \mathbb{C}g,$$

with multiplication defined on the basis vectors by $g \cdot h = gh$.

Example 1.2. • $\mathbb{C}[\mathbb{Z}] = \mathbb{C}[t, t^{-1}]$ is the ring of Laurent polynomials over \mathbb{C} .

• For $n \in \mathbb{N}_{\geq 1}$, $\mathbb{C}[\mathbb{Z}/n] = \mathbb{C}[t]/(t^n - 1)$.

The group ring $\mathbb{C}G$ can be equipped with a natural inner product $\langle \cdot, \cdot \rangle$ defined by

$$\left\langle \sum_{g \in G} a_g g, \sum_{g \in G} b_g g \right\rangle \coloneqq \sum_{g \in G} \bar{a}_g b_g$$

The completion of $\mathbb{C}G$ with respect to $\langle \cdot, \cdot \rangle$ is a complex Hilbert space, which we denote by $\ell^2 G$; it can also be defined as the \mathbb{C} -vector space of ℓ^2 -summable functions $G \to \mathbb{C}$.

Note that $\ell^2 G$ has the structure of a $\mathbb{C}G$ -module, with action given by

$$h \cdot \sum_{g \in G} a_g g \coloneqq \sum_{g \in G} a_{gh} g.$$

Example 1.3. • If G is finite, then $\ell^2 G = \mathbb{C}G$.

• If $G = \mathbb{Z}$, by Fourier analysis, there is an isomorphism $\ell^2 G \cong L^2([-\pi,\pi],\mathbb{C})$ given by

$$\sum_{n \in \mathbb{Z}} a_n t^n \longmapsto \left(x \mapsto \frac{1}{\sqrt{2\pi}} \sum_{n \in \mathbb{Z}} a_n e^{inx} \right).$$

Since the group G is assumed to be countable, the Hilbert space $\ell^2 G$ is separable.

Definition 1.4. A *Hilbert G-module* is a complex Hilbert space V with a \mathbb{C} -linear isometric (left) G-action such that there is an isometric G-embedding

$$V \hookrightarrow \left(\ell^2 G\right)^n$$

for some $n \in \mathbb{N}_{>1}$.

A morphism between two Hilbert G-modules V and W is a G-equivariant bounded \mathbb{C} -linear map $V \to W$.

Our homology groups will be Hilbert G-modules; our main task will be to define a notion of dimension for such modules.

1.3 Background on von Neumann algebras

Let \mathcal{H} be a complex Hilbert space. Then the space $B(\mathcal{H})$ of bounded linear operators $\mathcal{H} \to \mathcal{H}$ is a \mathbb{C} -algebra, with multiplication given by composition.

Recall that, given $u \in B(\mathcal{H})$, there is a unique $u^* \in B(\mathcal{H})$ — called the *adjoint* of f — such that, for all $x, y \in \mathcal{H}$,

$$\langle u(x), y \rangle = \langle x, u^*(y) \rangle$$

(This follows from the Riesz Representation Theorem applied to the linear form $\langle u(\cdot), y \rangle$ for fixed $y \in \mathcal{H}$.) Hence, \cdot^* defines an involution on $B(\mathcal{H})$; this turns the latter into a *-algebra.

There are several topologies that one can define on $B(\mathcal{H})$:

• The norm topology, given by

$$u_n \xrightarrow{\|\cdot\|} u \iff \|u_n - u\| \to 0,$$

• The strong topology, given by

$$u_n \xrightarrow{s} u \iff \forall x \in \mathcal{H}, \ \|u_n(x) - u(x)\| \to 0,$$

• The *weak topology*, given by

$$u_n \xrightarrow{w} u \stackrel{\text{def}}{\Longrightarrow} \forall x, y \in \mathcal{H}, \ \langle u_n(x), y \rangle \to \langle u(x), y \rangle.$$

Definition 1.5. A von Neumann algebra is a unital weakly closed *-subalgebra of $B(\mathcal{H})$ for some complex Hilbert space \mathcal{H} .

Given a subset $S \subseteq B(\mathcal{H})$, its *commutant* is defined by

$$S' \coloneqq \{ u \in B(\mathcal{H}) \mid \forall s \in S, \ us = su \}.$$

The bicommutant of S is simply S'' := (S')'.

The following theorem is a fundamental structural result for von Neumann algebras:

Theorem 1.6 (von Neumann Bicommutant Theorem). Let \mathcal{H} be a complex Hilbert space and let $A \subseteq B(\mathcal{H})$ be a unital *-subalgebra of $B(\mathcal{H})$. Then the following are equivalent:

(i)
$$A'' = A$$

- (ii) A is strongly closed.
- (iii) A is weakly closed.

1.4 The group von Neumann algebra and its trace

We come back to the setup of §1.2: G is a countable group and we are considering the Hilbert space $\ell^2 G$. As above, we denote by $B(\ell^2 G)$ the \mathbb{C} -algebra of bounded linear operators $\ell^2 G \to \ell^2 G$.

Observe that there are two embeddings

$$\lambda, \rho : \mathbb{C}G \hookrightarrow B\left(\ell^2 G\right)$$

given by the respective actions of $\mathbb{C}G$ on $\ell^2 G$ by left and right multiplication.

Proposition/Definition 1.7. The following subsets of $B(\ell^2 G)$ are all equal:

- (i) The weak closure of $\rho(\mathbb{C}G)$,
- (ii) The strong closure of $\rho(\mathbb{C}G)$,
- (iii) The bicommutant of $\rho(\mathbb{C}G)$,
- (iv) The set of $u \in B(\ell^2 G)$ that are left $\mathbb{C}G$ -equivariant, i.e. $\lambda(\mathbb{C}G)'$.

This set is called the (right) group von Neumann algebra of G, and denoted by NG.

Proof. The equalities (i) = (ii) = (iii) follow from the Bicommutant Theorem (1.6).

We first show that (ii) \subseteq (iv). It is clear that $\rho(\mathbb{C}G) \subseteq$ (iv), so it suffices to prove that (iv) is strongly closed. Let $(u_n)_{n\geq 1}$ be a sequence of left $\mathbb{C}G$ -equivariant bounded linear operators on $\ell^2 G$, converging to $u \in B(\ell^2 G)$. For all $a \in \mathbb{C}G$ and $x \in \ell^2 G$, we have

$$a \cdot u(x) = a \cdot \lim_{n \to \infty} u_n(x) = \lim_{n \to \infty} (a \cdot u_n(x)) = \lim_{n \to \infty} u_n(ax) = u(ax),$$

so u is also left $\mathbb{C}G$ -equivariant. This proves that (iv) is sequentially closed in the strong topology. The same proof, after replacing sequences with nets, shows that (iv) is strongly closed.

Conversely, we show that (iv) \subseteq (iii)¹. We consider the operator $J : \ell^2 G \to \ell^2 G$ defined by

$$J: \sum_{g \in G} a_g g \mapsto \sum_{g \in G} \bar{a}_{g^{-1}} g$$

Claim. (i) $J \circ J = id$.

(ii) $J \circ \lambda(x) \circ J = \rho(Jx)$ for all $x \in \mathbb{C}G$. In particular, $J\lambda(\mathbb{C}G)J = \rho(\mathbb{C}G)$.

(iii) For all $u \in \lambda(\mathbb{C}G)'$, we have $J \circ u(e) = u^*(e)$.

Proof of the claim. (i) This is clear.

¹Thanks are due to Hiroto Nishikawa for explaining this part of the proof.

- (ii) The equality follows from a simple computation.
- (iii) A computation shows that, for all $x, y \in \mathbb{C}G$,

$$\langle Jx, y \rangle = \langle e, xy \rangle = \langle e, yx \rangle = \langle Jy, x \rangle.$$
 (*)

Note that (*) also holds for $x \in \mathbb{C}G$ and $y \in \ell^2 G$ by density. Now take $u \in \lambda(\mathbb{C}G)'$. Using (*), we have for all $x \in \mathbb{C}G$,

$$\langle J \circ u(e), x \rangle = \langle e, \lambda(x) \circ u(e) \rangle = \langle e, u \circ \lambda(x)(e) \rangle = \langle u^*(e), \lambda(x)(e) \rangle = \langle u^*(e), x \rangle.$$

Hence, the linear forms $\langle J \circ u(e), - \rangle$ and $\langle u^*(e), - \rangle$ agree on $\mathbb{C}G$ and therefore on $\ell^2 G$ by density; it follows that $J \circ u(e) = u^*(e)$.

Using the above, we are now ready to show that $\lambda (\mathbb{C}G)' \subseteq \rho (\mathbb{C}G)''$; this will prove the inclusion (iv) \subseteq (iii). Proving that $\lambda (\mathbb{C}G)' \subseteq \rho (\mathbb{C}G)''$ amounts to showing that every $u \in \lambda (\mathbb{C}G)'$ and $v \in \rho (\mathbb{C}G)'$ commute. But by (ii) of the claim, we have

$$\rho\left(\mathbb{C}G\right)' = \left(J\lambda\left(\mathbb{C}G\right)J\right)' = J\lambda\left(\mathbb{C}G\right)'J.$$

Hence, we write v = JwJ with $w \in \lambda(\mathbb{C}G)'$. Let $x \in \ell^2 G$. Using repeatedly (iii) of the claim, together with the facts that $\rho(\mathbb{C}G) \subseteq \lambda(\mathbb{C}G)'$ and that $(\lambda(\mathbb{C}G)')^* = \lambda(\mathbb{C}G)'$, we obtain

$$\begin{split} u(JwJ)x &= uJwJ\rho(x)e = uJw\rho(x)^*e = u\rho(x)w^*e, \\ (JwJ)ux &= JwJu\rho(x)e = Jw\rho(x)^*u^*e = u\rho(x)w^*e, \end{split}$$

proving that u(JwJ) = (JwJ)u as wanted.

In order to define a notion of dimension for Hilbert G-modules, the basic idea is that, in a finite-dimensional Hilbert space, the dimension of a subspace is equal to the trace of the orthogonal projection onto that subspace.

Our next step is therefore to equip NG with a trace.

Definition 1.8. The *trace* on NG is the map $\operatorname{tr}_G : \operatorname{N}G \to \mathbb{C}$ given by

$$\operatorname{tr}_G: a \mapsto \langle e, a(e) \rangle$$

where $e \in \mathbb{C}G \subseteq \ell^2 G$ is the atomic function at the identity $e \in G$.

Proposition 1.9. The following properties hold for all $a, b \in NG$:

(i) (Trace property) $\operatorname{tr}_G(a \circ b) = \operatorname{tr}_G(b \circ a)$.

(ii) (Faithfulness) $\operatorname{tr}_G(a^* \circ a) = 0$ if and only if a = 0.

- (iii) (Positivity) Suppose that $a \ge 0$, in the sense that $\forall x \in \ell^2 G$, $\langle x, a(x) \rangle \ge 0$. Then $\operatorname{tr}_G(a) \ge 0$.
- Proof. (i) Note that, for $a = \sum_{g} a_{g}g \in \mathbb{C}G$, we have $\operatorname{tr}_{G}(a) = a_{e}$. Moreover, for $a, b \in \mathbb{C}G$, the composition $a \circ b$ acts on $\ell^{2}G$ as the product ba (because $\mathbb{C}G$ acts on $\ell^{2}G$ by right multiplication!), so $\operatorname{tr}_{G}(a \circ b)$ is equal to the coefficient of e in ba:

$$\operatorname{tr}_G(a \circ b) = \sum_{\substack{g,h \in G\\gh=e}} b_g a_h.$$

This is symmetric in a and b, and hence equal to $\operatorname{tr}_G(b \circ a)$. This proves the trace property for $a, b \in \mathbb{C}G$, which extends by continuity to NG.

(ii) Let $a \in NG$ with $\operatorname{tr}_G(a^* \circ a) = 0$. Then

$$0 = \langle e, a^* \circ a(e) \rangle = \langle a(e), a(e) \rangle,$$

so a(e) = 0. By G-equivariance, we have $a(g) = g \cdot a(e) = 0$ for all $g \in G$. It follows by linearity that a is 0 on $\mathbb{C}G$, and by continuity that a is 0 on NG.

(iii) This is clear.

Given a matrix $A \in M_{n \times n}$ (NG), we define

$$\operatorname{tr}_G(A) \coloneqq \sum_{j=1}^n \operatorname{tr}_G(A_{jj}).$$

Usual linear algebra shows that this trace also satisfies Proposition 1.9.

Now any bounded left *G*-equivariant map $(\ell^2 G)^n \to (\ell^2 G)^n$ is represented by a matrix in $M_{n \times n}$ (NG) and hence has a trace.

1.5 Von Neumann dimension

Let G be a countable group.

Proposition/Definition 1.10. Let V be a Hilbert G-module. The von Neumann-Gdimension of V is defined by

$$\dim_{\mathrm{N}G} V \coloneqq \mathrm{tr}_G(p),$$

where $i: V \hookrightarrow (\ell^2 G)^n$ is a choice of isometric G-embedding for some $n \in \mathbb{N}_{\geq 1}$ and $p: (\ell^2 G)^n \to (\ell^2 G)^n$ is the orthogonal projection onto the closed subspace i(V). This is independent of the choice of i, and $\dim_{\mathrm{NG}} V \in \mathbb{R}_{\geq 0}$.

Proof. Let $j: V \hookrightarrow (\ell^2 G)^m$ be another isometric G-embedding, with $m \in \mathbb{N}_{\geq 1}$, and let $\begin{array}{l} q: (\ell^2 G)^m \to (\ell^2 G)^m \text{ be the orthogonal projection onto } j(V).\\ \text{Define a map } u: (\ell^2 G)^n \to (\ell^2 G)^m \text{ by } u_{|\mathrm{Im}\,i} \coloneqq j \circ i^{-1} \text{ and } u_{|(\mathrm{Im}\,i)^{\perp}} \coloneqq 0. \end{array}$ By constructional projection of the second projection of

tion, $j = u \circ i$; it follows that $q = p \circ u^*$. Hence,

$$\operatorname{tr}_G(q) = \operatorname{tr}_G(u \circ q) = \operatorname{tr}_G(u \circ p \circ u^*) = \operatorname{tr}_G(p \circ u^* \circ u) = \operatorname{tr}_G(p \circ p) = \operatorname{tr}_G(p).$$

To see that $\dim_{NG} V \in \mathbb{R}_{\geq 0}$, note that p is a positive operator, so the diagonal entries of its matrix are also positive operators; the result follows from positivity of the trace. \Box

We give two examples of computations of von Neumann dimensions.

Example 1.11 (Finite groups). If G is a finite group, then $\mathbb{C}G = \ell^2 G = \mathbb{N}G$. A Hilbert *G*-module V is finite-dimension over \mathbb{C} and satisfies

$$\dim_{\mathrm{N}G} V = \frac{1}{|G|} \dim_{\mathbb{C}} V.$$

Example 1.12 (Z). If $G = \mathbb{Z}$, then $\ell^2 G \cong L^2([-\pi,\pi],\mathbb{C})$ (see Example 1.3), and

$$\mathbf{N}G \cong L^{\infty}\left([-\pi,\pi],\mathbb{C}\right)$$

with the action of NG on $\ell^2 G$ given by pointwise multiplication.

Under this isomorphism, $\operatorname{tr}_G : L^{\infty}([-\pi,\pi],\mathbb{C})$ is given by

$$\operatorname{tr}_G: f \mapsto \frac{1}{2\pi} \int_{-\pi}^{\pi} f \, d\lambda.$$

Now let $A \subseteq [-\pi, \pi]$ be a measurable set, and consider

$$V \coloneqq \left\{ f \cdot \chi_A \mid f \in L^2\left([-\pi, \pi], \mathbb{C}\right) \right\} \subseteq L^2\left([-\pi, \pi], \mathbb{C}\right) \cong \ell^2 G.$$

This is a Hilbert-G-module (embedding into $\ell^2 G$). The orthogonal projection onto A is represented by the matrix $(\chi_A) \in M_{1 \times 1}(NG)$. Therefore,

$$\dim_{\mathrm{N}G} V = \mathrm{tr}_G(\chi_A) = \frac{1}{2\pi}\lambda(A).$$

In particular, every number in [0, 1] occurs as a von Neumann dimension!

We finish with some basic properties of the von Neumann dimension.

Proposition 1.13. The von Neumann dimension has the following properties.

- (i) (Normalisation) $\dim_{NG} \ell^2 G = 1$.
- (ii) (Faithfulness) For every Hilbert G-module V, we have $\dim_{NG} V = 0$ if and only if V = 0.

- (iii) (Weak isomorphism invariance) If $f: V \to W$ is a morphism of Hilbert G-modules with Ker f = 0 and $\overline{\text{Im } f} = W$, then $\dim_{\text{NG}} V = \dim_{\text{NG}} W$.
- (iv) (Additivity) Assume that the sequence of Hilbert G-modules

$$0 \to V_1 \xrightarrow{i} V_2 \xrightarrow{\pi} V_3 \to 0$$

is weakly exact, in the sense that i is injective, $\overline{\mathrm{Im}\,i} = \mathrm{Ker}\,\pi$, and $\overline{\mathrm{Im}\,\pi} = V_3$. Then

$$\dim_{\mathrm{N}G} V_2 = \dim_{\mathrm{N}G} V_1 + \dim_{\mathrm{N}G} V_3.$$

(v) (Multiplicativity) Let H be another countable group. Let V be a Hilbert G-module and W a Hilbert H-module. Then the completed tensor product $V \bar{\otimes}_{\mathbb{C}} W$ is a Hilbert $G \times H$ -module, and

$$\dim_{\mathbb{N}(G\times H)} \left(V \bar{\otimes}_{\mathbb{C}} W \right) = \dim_{\mathbb{N}G} V \cdot \dim_{\mathbb{N}H} W.$$

(vi) (Restriction) Let V be a Hilbert G-module and let $H \leq G$ be a finite-index subgroup. Then V is naturally a Hilbert H-module, and

$$\dim_{\mathrm{N}H} \operatorname{Res}_{H}^{G} V = [G:H] \cdot \dim_{\mathrm{N}G} V.$$

Sketch of proof. (i) This is clear (taking $\ell^2 G \hookrightarrow (\ell^2 G)^1$ and p = id).

- (ii) This follows from faithfulness of the von Neumann trace (1.9).
- (iii) This is a consequence of *polar decomposition*: the map f can be written as $f = u \circ p$, where u is a partial isometry and p is a positive operator with Ker u = Ker p. In this case, f is injective, so Ker u = Ker p = 0; moreover, u has closed image and so Im $u = \overline{\text{Im } u} = \overline{\text{Im } f} = W$. Hence, u is an isometry, which is G-equivariant by uniqueness of the polar decomposition.
- (iv) Note first that $\dim_{\mathbb{N}G}$ is additive with respect to direct sums, and define a weak isomorphism $V \to \overline{\mathrm{Im}\,i} \oplus V_3$ by $x \mapsto p(x) \oplus \pi(x)$, where $p: V \to \overline{\mathrm{Im}\,i}$ is the orthogonal projection.
- (v) The key fact is that there is an isomorphism $\ell^2(G \times H) \cong \ell^2 G \bar{\otimes}_{\mathbb{C}} \ell^2 H$ of Hilbert $G \times H$ -modules.

Week $2 - L^2$ -homology and L^2 -Betti numbers

Speaker: Alexis Marchand. References: [1, (parts of) Chapters 3-4], [4, Chapter 2], [3, §1.2].

2.1 Eilenberg–MacLane space and finiteness properties

Let G be a discrete group. We will study the (co)homology of G via its Eilenberg–MacLane space.

Definition 2.1. An *Eilenberg–MacLane space* for G — or K(G, 1) space — is a connected aspherical CW-complex X with $\pi_1 X = G$.

Up to homotopy equivalence, a K(G, 1) space is unique.

In order to construct a K(G, 1) space, we start with a (possibly infinite) presentation of G, we build its *presentation complex* (with one 0-cell, one 1-cell for each generator, one 2-cell for each relation), and we successively add higher dimensional cells to kill all the homotopy groups. The resulting CW-complex is a K(G, 1).

Remark 2.2. Let G be a countable group and let X be a K(G, 1) space. The group homology of G can be defined as

$$H_*(G) \coloneqq H_*(X)$$

where $H^*(X)$ denotes the (singular/cellular) homology of X.

Given a K(G, 1) space X, there is a free cellular action of G on the universal cover X; we say that \tilde{X} is a *free G-CW-complex*.

We will define the L^2 -Betti numbers of a general free G-CW-complex Y. The L^2 -Betti numbers of G will then be defined as those of \tilde{X} , where X is a K(G, 1) space.

We will need certain finiteness properties.

Definition 2.3. Let Y be a free G-CW-complex. We say that Y has type

- F_n $(n \ge 0)$ if Y has a finite number of orbits of n-cells,
- F_{∞} if Y is of type F_n for all $n \ge 0$.

We say that G is of type F_n or F_∞ , if the G-CW-complex \tilde{X} (for X a K(G, 1) space) is of type F_n or F_∞ respectively.

- Remark 2.4. (i) We have $F_{\infty} \Rightarrow \cdots \Rightarrow F_{n+1} \Rightarrow F_n \Rightarrow \cdots \Rightarrow F_0$. All those implications are strict.
- (ii) Every group is of type F_0 .
- (iii) A group is of type F_1 if and only if it is finitely generated.
- (iv) A group is of type F_2 if and only if it is finitely presented.

2.2 Definition of L^2 -Betti numbers

We now define the L^2 -Betti numbers of a free G-CW-complex Y of type F_{∞} .

Let $C_*^{\text{cell}}(Y)$ be the cellular chain complex of Y over \mathbb{C} : for each degree $n \in \mathbb{N}_{\geq 0}$, $C_n^{\text{cell}}(Y)$ is the \mathbb{C} -vector space with basis the set of *n*-cells of Y. The action $G \curvearrowright Y$ induces $G \curvearrowright C_*^{\text{cell}}(Y)$, which gives $C_*^{\text{cell}}(Y)$ the structure of a chain complex over $\mathbb{C}G$. The L^2 -cellular chain complex of Y is defined by

$$C^{(2)}_*(G \curvearrowright Y) \coloneqq \ell^2 G \otimes_{\mathbb{C}G} C^{\operatorname{cell}}_*(Y),$$

where $\ell^2 G$ is equipped with the action of $\mathbb{C}G$ by multiplication on the right. The L^2 boundary maps are defined by

$$\partial_n^{(2)} \coloneqq \mathrm{id}_{\ell^2 G} \otimes \partial_n^{\mathrm{cell}} : C_n^{(2)} \left(G \curvearrowright Y \right) \to C_{n-1}^{(2)} \left(G \curvearrowright Y \right).$$

This makes $C^{(2)}_*(G \frown Y)$ a chain complex.

Definition 2.5. The L^2 -homology of a free G-CW-complex Y is defined by

$$H_n^{(2)}(G \curvearrowright Y) \coloneqq \operatorname{Ker} \partial_n^{(2)} / \overline{\operatorname{Im} \partial_{n+1}^{(2)}}.$$

Proposition 2.6. If $G \curvearrowright Y$ is of type F_{∞} , then $H_n^{(2)}(G \curvearrowright Y)$ is a Hilbert G-module.

Proof. Fix $n \ge 0$. The *n*-th chain group $C_n^{(2)}(G \curvearrowright Y)$ can be described as follows. Pick a collection $\{\sigma_i\}_{i\in I}$ of *n*-cells of *Y* whose orbits are disjoint and cover the *n*-skeleton of *Y*. The set *I* can be chosen finite since $G \curvearrowright Y$ is of type F_{∞} .

We have

$$C_n^{\operatorname{cell}}(Y) = \bigoplus_{i \in I} \bigoplus_{g \in G} \mathbb{C} \left(g \cdot \sigma_i \right) = \bigoplus_{i \in I} \mathbb{C}G \left[\sigma_i \right],$$

and therefore

$$C_n^{(2)}(G \curvearrowright Y) = \bigoplus_{i \in I} \ell^2 G[\sigma_i].$$

It is now clear that $C_n^{(2)}(G \curvearrowright Y)$ is a Hilbert *G*-module (with an embedding into $(\ell^2 G)^{|I|}$). Moreover, the L^2 -boundary maps $\partial_n^{(2)}$ are morphisms of Hilbert *G*-modules.

Hence, the result is a consequence of the general fact that, if $\varphi : V \to W$ is a morphism of Hilbert *G*-modules, then Ker φ and $W/\overline{\operatorname{Im} \varphi}$ are Hilbert *G*-modules.

Definition 2.7. Let Y be a free G-CW-complex of type F_{∞} . For $n \in \mathbb{N}_{\geq 0}$, the *n*-th L^2 -Betti number of $G \curvearrowright Y$ is

$$b_n^{(2)}(G \curvearrowright Y) \coloneqq \dim_{NG} H_n^{(2)}(G \curvearrowright Y).$$

In order to define the L^2 -Betti numbers of a group, we must make sure that L^2 -Betti numbers are invariant under homotopy equivalence, so that they do not depend on the choice of a K(G, 1) space.

Proposition 2.8. Let Y_1, Y_2 be free G-CW-complexes. If $f: Y_1 \to Y_2$ is a G-equivariant homotopy equivalence, then for all $n \in \mathbb{N}_{\geq 0}$,

$$b_n^{(2)}\left(G \curvearrowright Y_1\right) = b_n^{(2)}\left(G \curvearrowright Y_2\right).$$

Proof. The map f induces a $\mathbb{C}G$ -chain homotopy equivalence

$$f_*: C^{\operatorname{cell}}_*(Y_1) \xrightarrow{\sim} C^{\operatorname{cell}}_*(Y_2),$$

which then induces a chain homotopy equivalence in the category of Hilbert G-modules

$$C^{(2)}_* (G \curvearrowright Y_1) \xrightarrow{\sim} C^{(2)}_2 (G \curvearrowright Y_2).$$

Definition 2.9. Let G be a group of type F_{∞} . For $n \in \mathbb{N}_{\geq 0}$, the *n*-th L^2 -Betti number of G is

$$b_n^{(2)}(G) \coloneqq b_n^{(2)}\left(G \curvearrowright \tilde{X}\right),$$

where \tilde{X} is the universal cover of a K(G, 1) space.

It follows from Proposition 2.8 and the uniqueness of K(G, 1) spaces up to homotopy that $b_n^{(2)}(G)$ does not depend on the choice of a K(G, 1) space. From now on, we will focus on L^2 -Betti numbers of groups.

- (i) An alternative approach would have been to start with a projective Remark 2.10. resolution of \mathbb{C} by $\mathbb{C}G$ -modules, and then to apply $\ell^2 G \otimes_{\mathbb{C}G} -$.
- (ii) One could also have defined the L^2 -cochain complex of $G \curvearrowright Y$ by

$$C^*_{(2)}\left(G \curvearrowright Y\right) \coloneqq \operatorname{Hom}_{\mathbb{C}G}\left(C^{\operatorname{cell}}_*(Y), \ell^2 G\right),$$

and take $H^*_{(2)}(G \curvearrowright Y)$ to be the cohomology of this cochain complex. In fact, this leads to isomorphisms of Hilbert G-modules

$$H_{(2)}^*(G \curvearrowright Y) \cong H_*^{(2)}(G \curvearrowright Y),$$

so that homological and cohomological L^2 -Betti numbers are equal.

2.3 Basic properties

We start by computing $b_0^{(2)}$.

Proposition 2.11. Let G be a group of type F_{∞} . Then

$$b_0^{(2)}(G) = \frac{1}{|G|}$$

with the convention $1/\infty = 0$.

Proof. We construct a K(G, 1) space as in §2.1, and obtain isomorphisms

$$C_0^{(2)}\left(G \curvearrowright \tilde{X}\right) \cong \ell^2 G$$
 and $C_1^{(2)}\left(G \curvearrowright \tilde{X}\right) \cong \bigoplus_{s \in S} \ell^2 G[s],$

where S is a generating set for G, and the boundary map is given by $\partial_1^{(2)}(s) = s - e$. Hence,

$$H_0^{(2)}\left(G \curvearrowright \tilde{X}\right) = \ell^2 G / \overline{\langle x - gx \mid x \in \ell^2 G, \ g \in G \rangle_{\mathbb{C}}}.$$

• If G is finite, then $\ell^2 G = \mathbb{C}G$ and $H_0^{(2)}\left(G \curvearrowright \tilde{X}\right) = \mathbb{C}$ (with G acting trivially), so

$$b_0^{(2)}(G) = \dim_{NG} \mathbb{C} = \frac{1}{|G|}.$$

• If G is infinite, we will show that $H_0^{(2)}\left(G \curvearrowright \tilde{X}\right) = 0$, or equivalently that the dual of $H_0^{(2)}\left(G \curvearrowright \tilde{X}\right)$ is trivial. This amounts to proving that, if $f: \ell^2 G \to \mathbb{C}$ is \mathbb{C} -linear, bounded, and zero on $\langle x - gx \mid x \in \ell^2 G, g \in G \rangle_{\mathbb{C}}$ (i.e. f is left-G-invariant), then f = 0. As G is infinite and countable, we can enumerate $G = \{g_n\}_{n \ge 1}$, and consider $x = \sum_n \frac{1}{n} g_n \in \ell^2 G$. We have

$$f(x) = \sum_{n \ge 1} \frac{1}{n} f(g_n) = \sum_{n \ge 1} \frac{1}{n} f(e).$$

Therefore, f(e) = 0, so f(g) = 0 for all $g \in G$ since f is G-invariant, and f = 0 by linearity and continuity.

We now give basic properties that will be useful for computations of L^2 -Betti numbers.

Proposition 2.12. Let G and H be two groups of type F_{∞} and $n \ge 0$.

(i) (Dimension) If G has a K(G, 1) space of dimension $\leq n - 1$, then

$$b_n^{(2)}(G) = 0$$

(ii) (Restriction) If H is a finite-index subgroup of G, then

$$b_n^{(2)}(H) = [G:H] \cdot b_n^{(2)}(G)$$

(iii) (Künneth formula)

$$b_n^{(2)}\left(G\times H\right) = \sum_{j=0}^n b_j^{(2)}(G)\cdot b_{n-j}^{(2)}(H).$$

(iv) (Additivity)

$$b_1^{(2)}(G * H) = b_1^{(2)}(G) + b_1^{(2)}(H) + 1 - b_0^{(2)}(G) - b_0^{(2)}(H)$$

and moreover, if $n \geq 2$,

$$b_n^{(2)}\left(G\ast H\right)=b_n^{(2)}(G)+b_n^{(2)}(H).$$

(v) (Poincaré duality) If G has a K(G, 1) space which is an orientable closed connected manifold of dimension d, then

$$b_n^{(2)}(G) = b_{d-n}^{(2)}(G).$$

(vi) (Euler characteristic) If G has a K(G, 1) space with a finite number of cells, then

$$\chi(G) = \sum_{n \ge 0} (-1)^n b_n^{(2)}(G).$$

- *Proof.* (i) If X is a K(G, 1) space of dimension $\leq n 1$, then $C_n^{(2)}\left(G \curvearrowright \tilde{X}\right) = 0$ and $H_n^{(2)}\left(G \curvearrowright \tilde{X}\right) = 0.$
 - (ii) Let X be a K(G,1) space, and let $X_H \to X$ be the covering associated to the subgroup $H \leq G$. Hence, X_H is a K(H,1) and \tilde{X} is the common universal cover of X and X_H . Therefore, $C_*^{(2)}\left(H \curvearrowright \tilde{X}\right)$ is obtained from $C_*^{(2)}\left(G \curvearrowright \tilde{X}\right)$ by applying the restriction functor Res_H^G . The result now follows from Proposition 1.13(vi).
- (iii) If X is K(G, 1) space and Y is a K(H, 1) space, then $X \times Y$ is a $K(G \times H, 1)$ space. The rest of the proof is similar to that of the usual Künneth formula, using 1.13(v).
- (iv) If X is a K(G, 1) space and Y is a K(H, 1) space, then $X \vee Y$ is a K(G * H, 1). We then use a Mayer–Vietoris-type argument.
- (v) This uses a Poincaré duality "twisted" by the action of G, and the fact that L^2 -Betti numbers can also be computed in terms of cohomology (see Remark 2.10(ii)).

(vi) The main ingredient is an "L²-rank-nullity theorem" : if $\varphi: V \to W$ is a morphism of Hilbert *G*-modules, then

$$\dim_{NG}(V) - \dim_{NG}(W) = \dim_{NG}\left(\operatorname{Ker}\varphi\right) - \dim_{NG}\left(W/\overline{\operatorname{Im}\varphi}\right)$$

It follows that, for $n \ge 0$,

$$b_n^{(2)}(G) = \dim_{NG} \left(\operatorname{Ker} \partial_n^{(2)} \right) + \dim_{NG} \left(\operatorname{Ker} \partial_{n+1}^{(2)} \right) - \dim_{NG} \left(C_{n+1}^{(2)} \left(G \curvearrowright \tilde{X} \right) \right).$$

Therefore,

$$\sum_{n \ge 0} (-1)^n b_n^{(2)}(G) = \sum_{n \ge 0} (-1)^n \dim_{NG} \left(C_n^{(2)} \left(G \curvearrowright \tilde{X} \right) \right).$$

But $\dim_{NG} \left(C_n^{(2)} \left(G \curvearrowright \tilde{X} \right) \right)$ is the number of *n*-cells of *X*, so the above sum is equal to $\chi(X) = \chi(G)$.

Remark 2.13. Among the properties listed in Proposition 2.12, items (i), (ii), (iv), (v) et (vi) are also true for usual Betti numbers (defined by $b_n(G) := \dim_{\mathbb{C}} H_n(G)$). So far, the only property that is specific to the L^2 world is the restriction formula (ii).

2.4 Some examples

We now give explicit computations of L^2 -Betti numbers in a few simple cases.

Example 2.14 (Finite groups). Let G be a finite group. Then

$$b_n^{(2)}(G) = \begin{cases} \frac{1}{|G|} & \text{if } n = 0\\ 0 & \text{if } n \ge 1 \end{cases}$$

Proof. Note that the trivial group $\{1\}$ has index |G| in G; its L^2 -Betti numbers are

$$b_n^{(2)}(\{1\}) = \begin{cases} 1 & \text{if } n = 0\\ 0 & \text{if } n \ge 1 \end{cases}.$$

(Indeed, the trivial group has a K(G, 1) space of dimension 0, and the case n = 0 comes from Proposition 2.11.) Now the result follows from the restriction formula (2.12(ii)).

Example 2.15 (\mathbb{Z}).

$$b_n^{(2)}(\mathbb{Z}) = 0$$
 for all $n \in \mathbb{N}_{\geq 0}$.

Proof. The circle S^1 is a $K(\mathbb{Z}, 1)$ space. Since dim $S^1 = 1$, we have $b_n^{(2)}(\mathbb{Z}) = 0$ for $n \ge 2$ (by 2.12.(i)). Moreover, $b_0^{(2)}(\mathbb{Z}) = 0$ since \mathbb{Z} is infinite (2.11). We can then compute $b_1^{(2)}(\mathbb{Z})$ in several different manners:

• Explicit computation. There is a cellular structure on S^1 with one 0-cell and one 1-cell. Therefore, $C_0^{(2)}(\mathbb{Z} \curvearrowright S^1) = \ell^2 \mathbb{Z}$, and $C_1^{(2)}(\mathbb{Z} \curvearrowright S^1) = \ell^2 \mathbb{Z}$, and $C_n^{(2)}(\mathbb{Z} \curvearrowright S^1) = 0$ for $n \ge 2$. Denoting by t a generator of \mathbb{Z} , the boundary map $\partial_1^{(2)}$ is given by

$$\partial_1^{(2)}\left(x\right) = (t-1)x$$

Hence, we see that $H_1^{(2)}(\mathbb{Z} \frown S^1) = \operatorname{Ker} \partial_1^{(2)} = 0.$

• Euler characteristic. By Proposition 2.12.(vi), we have

$$-b_1^{(2)}\left(\mathbb{Z}\right) = \chi\left(\mathbb{Z}\right) = 0.$$

• Finite-index subgroups. For all $d \ge 1$, the group \mathbb{Z} contains an index-d subgroup isomorphic to \mathbb{Z} , so the restriction formula (2.12.(ii)) yields

$$b_{n}^{(2)}\left(\mathbb{Z}\right) = d \cdot b_{n}^{(2)}\left(\mathbb{Z}\right)$$

It follows that $b_n^{(2)}(\mathbb{Z}) = 0$ for all $n \ge 0$.

Example 2.16 (Free groups). Let F_r be the free group of rank $r \ge 1$. Then

$$b_n^{(2)}(F_r) = \begin{cases} 0 & \text{if } n = 0\\ r - 1 & \text{if } n = 1\\ 0 & \text{if } n \ge 2 \end{cases}$$

Proof. We have $b_0^{(2)}(F_r) = 0$ since F_r is infinite (2.11). Moreover, $b_n^{(2)}(F_r) = 0$ for $n \ge 2$ because F_r has a K(G, 1) space of dimension 1 (2.12.(i)). Here are two different computations of $b_1^{(2)}(F_r)$:

• By additivity of L^2 -Betti numbers (2.12.(iv)), we have

$$b_1^{(2)}(F_r) = b_1^{(2)}(\mathbb{Z}) + b_1^{(2)}(F_{r-1}) + 1 - b_0^{(2)}(\mathbb{Z}) - b_0^{(2)}(F_{r-1}) = b_1^{(2)}(F_{r-1}) + 1.$$

We conclude by induction using $b_1^{(2)}(F_1) = b_1^{(2)}(\mathbb{Z}) = 0$ (2.15).

• By considering the Euler characteristic (2.12.(iv)), we have

$$-b_1^{(2)}(F_r) = \chi(F_r) = 1 - r.$$

Remark 2.17. The wedge of two circles $S^1 \vee S^1$ is a $K(F_2, 1)$ space; its universal cover is the degree-4 regular tree T. Example 2.16 shows that $b_1^{(2)}(F_r) = 1$. Figure 1 shows an explicit 1-cycle in $C_1^{(2)}(F_2 \curvearrowright T)$.

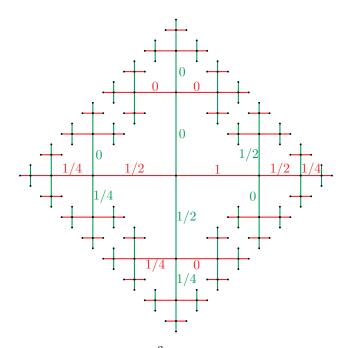


Figure 1: An L^2 -1-cycle for $F_2 \curvearrowright T$.

Example 2.18 (Surface groups). Let Σ_g be the orientable closed connected genus-g surface, for $g \ge 1$. Then

$$b_n^{(2)}(\pi_1 \Sigma_g) = \begin{cases} 0 & \text{if } n = 0\\ 2(g-1) & \text{if } n = 1\\ 0 & \text{if } n \ge 2 \end{cases}$$

Proof. The group $\pi_1 \Sigma_g$ is infinite, so $b_0^{(2)}(\pi_1 \Sigma_g) = 0$ (2.11), and Σ_g is a K(G, 1) space of dimension 2, so $b_n^{(2)}(\pi_1 \Sigma_g) = 0$ for $n \ge 3$ (2.12.(i)). Moreover, Poincaré duality (2.12.(v)) implies that

$$b_2^{(2)}(\pi_1 \Sigma_g) = b_0^{(2)}(\pi_1 \Sigma_g) = 0.$$

Finally, $-b_1^{(2)}(\pi_1 \Sigma_g) = \chi(\Sigma_g) = 2 - 2g$ (2.12.(iv)).

References

- Holger Kammeyer, Introduction to ℓ²-invariants, Lecture Notes in Mathematics, vol. 2247, Springer, Cham, 2019. MR3971279
- [2] _____, ℓ^2 -Betti numbers, Bounded cohomology and simplicial volume, 2023, pp. 57–62. MR4496345

- [3] Wolfgang Lück, L²-invariants: theory and applications to geometry and K-theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 44, Springer-Verlag, Berlin, 2002. MR1926649
- [4] Clara Löh, Ergodic theoretic methods in group homology—a minicourse on L²-Betti numbers in group theory, SpringerBriefs in Mathematics, Springer, Cham, [2020] ©2020. MR4177798