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Week 1 – Background on von Neumann dimension
Speaker: Alexis Marchand.
References: [1, Chapter 2], [2], [4, Chapter 1], [3, §1.1].

1.1 Motivation

The goal of what follows is to develop a good equivariant homology theory for actions
G ↷ X of groups on topological spaces. The usual singular chain complex Csing

∗ (X;C) and
singular homology H∗(X;C) inherit a G-action, so they have the structure of CG-modules.
However, the group G is typically infinite and we do not have a good notion of dimension
for modules over CG. This is why we will work in an L2 setting.
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We will introduce a homology theory H
(2)
∗ (G ↷ X), together with associated Betti

numbers b
(2)
∗ (G ↷ X). They will be well-defined when X is a G-CW-complex under a

certain finiteness property.
In the first talk, we introduce the relevant notions around Hilbert modules and von

Neumann dimension that will allow us to define L2-Betti numbers.

1.2 Hilbert G-modules

We fix a countable group G. We will work with C-coefficients throughout.

Definition 1.1. The group ring of G over C is the C-algebra CG (or C[G]), with underlying
C-vector space

CG :=
⊕
g∈G

Cg,

with multiplication defined on the basis vectors by g · h = gh.

Example 1.2. • C[Z] = C
[
t, t−1]

is the ring of Laurent polynomials over C.

• For n ∈ N≥1, C [Z/n] = C[t]/ (tn − 1).
The group ring CG can be equipped with a natural inner product ⟨·, ·⟩ defined by〈∑

g∈G

agg,
∑
g∈G

bgg

〉
:=

∑
g∈G

āgbg

The completion of CG with respect to ⟨·, ·⟩ is a complex Hilbert space, which we denote
by ℓ2G; it can also be defined as the C-vector space of ℓ2-summable functions G → C.

Note that ℓ2G has the structure of a CG-module, with action given by

h ·
∑
g∈G

agg :=
∑
g∈G

aghg.

Example 1.3. • If G is finite, then ℓ2G = CG.

• If G = Z, by Fourier analysis, there is an isomorphism ℓ2G ∼= L2 ([−π, π],C) given
by ∑

n∈Z
antn 7−→

x 7→ 1√
2π

∑
n∈Z

aneinx

 .

Since the group G is assumed to be countable, the Hilbert space ℓ2G is separable.

Definition 1.4. A Hilbert G-module is a complex Hilbert space V with a C-linear isometric
(left) G-action such that there is an isometric G-embedding

V ↪→
(
ℓ2G

)n
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for some n ∈ N≥1.
A morphism between two Hilbert G-modules V and W is a G-equivariant bounded

C-linear map V → W .
Our homology groups will be Hilbert G-modules; our main task will be to define a

notion of dimension for such modules.

1.3 Background on von Neumann algebras

Let H be a complex Hilbert space. Then the space B(H) of bounded linear operators
H → H is a C-algebra, with multiplication given by composition.

Recall that, given u ∈ B(H), there is a unique u∗ ∈ B(H) — called the adjoint of f —
such that, for all x, y ∈ H,

⟨u(x), y⟩ = ⟨x, u∗(y)⟩ .

(This follows from the Riesz Representation Theorem applied to the linear form ⟨u(·), y⟩
for fixed y ∈ H.) Hence, ·∗ defines an involution on B(H); this turns the latter into a
∗-algebra.

There are several topologies that one can define on B(H):
• The norm topology, given by

un
∥·∥−−→ u

def⇐⇒ ∥un − u∥ → 0,

• The strong topology, given by

un
s−→ u

def⇐⇒ ∀x ∈ H, ∥un(x) − u(x)∥ → 0,

• The weak topology, given by

un
w−→ u

def⇐⇒ ∀x, y ∈ H, ⟨un(x), y⟩ → ⟨u(x), y⟩ .

Definition 1.5. A von Neumann algebra is a unital weakly closed ∗-subalgebra of B(H)
for some complex Hilbert space H.

Given a subset S ⊆ B(H), its commutant is defined by
S′ := {u ∈ B(H) | ∀s ∈ S, us = su} .

The bicommutant of S is simply S′′ := (S′)′.
The following theorem is a fundamental structural result for von Neumann algebras:

Theorem 1.6 (von Neumann Bicommutant Theorem). Let H be a complex Hilbert space
and let A ⊆ B(H) be a unital ∗-subalgebra of B(H). Then the following are equivalent:

(i) A′′ = A.

(ii) A is strongly closed.

(iii) A is weakly closed.
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1.4 The group von Neumann algebra and its trace

We come back to the setup of §1.2: G is a countable group and we are considering the
Hilbert space ℓ2G. As above, we denote by B

(
ℓ2G

)
the C-algebra of bounded linear

operators ℓ2G → ℓ2G.
Observe that there are two embeddings

λ, ρ : CG ↪→ B
(
ℓ2G

)
given by the respective actions of CG on ℓ2G by left and right multiplication.

Proposition/Definition 1.7. The following subsets of B
(
ℓ2G

)
are all equal:

(i) The weak closure of ρ(CG),

(ii) The strong closure of ρ(CG),

(iii) The bicommutant of ρ(CG),

(iv) The set of u ∈ B
(
ℓ2G

)
that are left CG-equivariant, i.e. λ (CG)′.

This set is called the (right) group von Neumann algebra of G, and denoted by NG.

Proof. The equalities (i) = (ii) = (iii) follow from the Bicommutant Theorem (1.6).
We first show that (ii) ⊆ (iv). It is clear that ρ(CG) ⊆ (iv), so it suffices to prove that

(iv) is strongly closed. Let (un)n≥1 be a sequence of left CG-equivariant bounded linear
operators on ℓ2G, converging to u ∈ B

(
ℓ2G

)
. For all a ∈ CG and x ∈ ℓ2G, we have

a · u(x) = a · lim
n→∞

un(x) = lim
n→∞

(a · un(x)) = lim
n→∞

un(ax) = u(ax),

so u is also left CG-equivariant. This proves that (iv) is sequentially closed in the strong
topology. The same proof, after replacing sequences with nets, shows that (iv) is strongly
closed.

Conversely, we show that (iv) ⊆ (iii)1. We consider the operator J : ℓ2G → ℓ2G defined
by

J :
∑
g∈G

agg 7→
∑
g∈G

āg−1g.

Claim. (i) J ◦ J = id.

(ii) J ◦ λ(x) ◦ J = ρ (Jx) for all x ∈ CG. In particular, Jλ (CG) J = ρ (CG).

(iii) For all u ∈ λ(CG)′, we have J ◦ u(e) = u∗(e).

Proof of the claim. (i) This is clear.
1Thanks are due to Hiroto Nishikawa for explaining this part of the proof.
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(ii) The equality follows from a simple computation.

(iii) A computation shows that, for all x, y ∈ CG,

⟨Jx, y⟩ = ⟨e, xy⟩ = ⟨e, yx⟩ = ⟨Jy, x⟩ . (∗)

Note that (∗) also holds for x ∈ CG and y ∈ ℓ2G by density. Now take u ∈ λ(CG)′.
Using (∗), we have for all x ∈ CG,

⟨J ◦ u(e), x⟩ = ⟨e, λ(x) ◦ u(e)⟩ = ⟨e, u ◦ λ(x)(e)⟩ = ⟨u∗(e), λ(x)(e)⟩ = ⟨u∗(e), x⟩ .

Hence, the linear forms ⟨J ◦ u(e), −⟩ and ⟨u∗(e), −⟩ agree on CG and therefore on
ℓ2G by density; it follows that J ◦ u(e) = u∗(e).

Using the above, we are now ready to show that λ (CG)′ ⊆ ρ (CG)′′; this will prove
the inclusion (iv) ⊆ (iii). Proving that λ (CG)′ ⊆ ρ (CG)′′ amounts to showing that every
u ∈ λ (CG)′ and v ∈ ρ (CG)′ commute. But by (ii) of the claim, we have

ρ (CG)′ = (Jλ (CG) J)′ = Jλ (CG)′ J.

Hence, we write v = JwJ with w ∈ λ (CG)′. Let x ∈ ℓ2G. Using repeatedly (iii) of the
claim, together with the facts that ρ (CG) ⊆ λ (CG)′ and that

(
λ (CG)′

)∗
= λ (CG)′, we

obtain

u(JwJ)x = uJwJρ(x)e = uJwρ(x)∗e = uρ(x)w∗e,

(JwJ)ux = JwJuρ(x)e = Jwρ(x)∗u∗e = uρ(x)w∗e,

proving that u(JwJ) = (JwJ)u as wanted.

In order to define a notion of dimension for Hilbert G-modules, the basic idea is that,
in a finite-dimensional Hilbert space, the dimension of a subspace is equal to the trace of
the orthogonal projection onto that subspace.

Our next step is therefore to equip NG with a trace.

Definition 1.8. The trace on NG is the map trG : NG → C given by

trG : a 7→ ⟨e, a(e)⟩ ,

where e ∈ CG ⊆ ℓ2G is the atomic function at the identity e ∈ G.

Proposition 1.9. The following properties hold for all a, b ∈ NG:

(i) (Trace property) trG(a ◦ b) = trG(b ◦ a).

(ii) (Faithfulness) trG (a∗ ◦ a) = 0 if and only if a = 0.
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(iii) (Positivity) Suppose that a ≥ 0, in the sense that ∀x ∈ ℓ2G, ⟨x, a(x)⟩ ≥ 0. Then
trG(a) ≥ 0.

Proof. (i) Note that, for a = ∑
g agg ∈ CG, we have trG(a) = ae. Moreover, for a, b ∈

CG, the composition a ◦ b acts on ℓ2G as the product ba (because CG acts on ℓ2G
by right multiplication!), so trG(a ◦ b) is equal to the coefficient of e in ba:

trG(a ◦ b) =
∑

g,h∈G
gh=e

bgah.

This is symmetric in a and b, and hence equal to trG(b ◦ a). This proves the trace
property for a, b ∈ CG, which extends by continuity to NG.

(ii) Let a ∈ NG with trG (a∗ ◦ a) = 0. Then

0 = ⟨e, a∗ ◦ a(e)⟩ = ⟨a(e), a(e)⟩ ,

so a(e) = 0. By G-equivariance, we have a(g) = g · a(e) = 0 for all g ∈ G. It follows
by linearity that a is 0 on CG, and by continuity that a is 0 on NG.

(iii) This is clear.

Given a matrix A ∈ Mn×n (NG), we define

trG(A) :=
n∑

j=1
trG (Ajj) .

Usual linear algebra shows that this trace also satisfies Proposition 1.9.
Now any bounded left G-equivariant map

(
ℓ2G

)n →
(
ℓ2G

)n is represented by a matrix
in Mn×n (NG) and hence has a trace.

1.5 Von Neumann dimension

Let G be a countable group.

Proposition/Definition 1.10. Let V be a Hilbert G-module. The von Neumann-G-
dimension of V is defined by

dimNG V := trG(p),

where i : V ↪→
(
ℓ2G

)n is a choice of isometric G-embedding for some n ∈ N≥1 and
p :

(
ℓ2G

)n →
(
ℓ2G

)n is the orthogonal projection onto the closed subspace i(V ).
This is independent of the choice of i, and dimNG V ∈ R≥0.

6



Proof. Let j : V ↪→
(
ℓ2G

)m be another isometric G-embedding, with m ∈ N≥1, and let
q :

(
ℓ2G

)m →
(
ℓ2G

)m be the orthogonal projection onto j(V ).
Define a map u :

(
ℓ2G

)n →
(
ℓ2G

)m by u|Im i := j ◦ i−1 and u|(Im i)⊥ := 0. By construc-
tion, j = u ◦ i; it follows that q = p ◦ u∗. Hence,

trG(q) = trG (u ◦ q) = trG (u ◦ p ◦ u∗) = trG (p ◦ u∗ ◦ u) = trG (p ◦ p) = trG(p).

To see that dimNG V ∈ R≥0, note that p is a positive operator, so the diagonal entries
of its matrix are also positive operators; the result follows from positivity of the trace.

We give two examples of computations of von Neummann dimensions.
Example 1.11 (Finite groups). If G is a finite group, then CG = ℓ2G = NG. A Hilbert
G-module V is finite-dimension over C and satisfies

dimNG V = 1
|G|

dimC V.

Example 1.12 (Z). If G = Z, then ℓ2G ∼= L2 ([−π, π],C) (see Example 1.3), and

NG ∼= L∞ ([−π, π],C) ,

with the action of NG on ℓ2G given by pointwise multiplication.
Under this isomorphism, trG : L∞ ([−π, π],C) is given by

trG : f 7→ 1
2π

∫ π

−π
f dλ.

Now let A ⊆ [−π, π] be a measurable set, and consider

V :=
{

f · χA

∣∣∣ f ∈ L2 ([−π, π],C)
}

⊆ L2 ([−π, π],C) ∼= ℓ2G.

This is a Hilbert-G-module (embedding into ℓ2G). The orthogonal projection onto A is
represented by the matrix (χA) ∈ M1×1(NG). Therefore,

dimNG V = trG (χA) = 1
2π

λ(A).

In particular, every number in [0, 1] occurs as a von Neumann dimension!
We finish with some basic properties of the von Neumann dimension.

Proposition 1.13. The von Neumann dimension has the following properties.

(i) (Normalisation) dimNG ℓ2G = 1.

(ii) (Faithfulness) For every Hilbert G-module V , we have dimNG V = 0 if and only if
V = 0.
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(iii) (Weak isomorphism invariance) If f : V → W is a morphism of Hilbert G-modules
with Ker f = 0 and Im f = W , then dimNG V = dimNG W .

(iv) (Additivity) Assume that the sequence of Hilbert G-modules

0 → V1
i−→ V2

π−→ V3 → 0

is weakly exact, in the sense that i is injective, Im i = Ker π, and Im π = V3. Then

dimNG V2 = dimNG V1 + dimNG V3.

(v) (Multiplicativity) Let H be another countable group. Let V be a Hilbert G-module
and W a Hilbert H-module. Then the completed tensor product V ⊗̄CW is a Hilbert
G × H-module, and

dimN(G×H) (V ⊗̄CW ) = dimNG V · dimNH W.

(vi) (Restriction) Let V be a Hilbert G-module and let H ≤ G be a finite-index subgroup.
Then V is naturally a Hilbert H-module, and

dimNH ResG
H V = [G : H] · dimNG V.

Sketch of proof. (i) This is clear (taking ℓ2G ↪→
(
ℓ2G

)1 and p = id).

(ii) This follows from faithfulness of the von Neumann trace (1.9).

(iii) This is a consequence of polar decomposition: the map f can be written as f = u ◦ p,
where u is a partial isometry and p is a positive operator with Ker u = Ker p. In
this case, f is injective, so Ker u = Ker p = 0; moreover, u has closed image and
so Im u = Im u = Im f = W . Hence, u is an isometry, which is G-equivariant by
uniqueness of the polar decomposition.

(iv) Note first that dimNG is additive with respect to direct sums, and define a weak
isomorphism V → Im i⊕V3 by x 7→ p(x)⊕π(x), where p : V → Im i is the orthogonal
projection.

(v) The key fact is that there is an isomorphism ℓ2 (G × H) ∼= ℓ2G⊗̄Cℓ2H of Hilbert
G × H-modules.

Week 2 – L2-homology and L2-Betti numbers
Speaker: Alexis Marchand.
References: [1, (parts of) Chapters 3-4], [4, Chapter 2], [3, §1.2].
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2.1 Eilenberg–MacLane space and finiteness properties

Let G be a discrete group. We will study the (co)homology of G via its Eilenberg–MacLane
space.

Definition 2.1. An Eilenberg–MacLane space for G — or K(G, 1) space — is a connected
aspherical CW-complex X with π1X = G.

Up to homotopy equivalence, a K(G, 1) space is unique.
In order to construct a K(G, 1) space, we start with a (possibly infinite) presentation

of G, we build its presentation complex (with one 0-cell, one 1-cell for each generator, one
2-cell for each relation), and we successively add higher dimensional cells to kill all the
homotopy groups. The resulting CW-complex is a K(G, 1).
Remark 2.2. Let G be a countable group and let X be a K(G, 1) space. The group homology
of G can be defined as

H∗(G) := H∗(X),

where H∗(X) denotes the (singular/cellular) homology of X.
Given a K(G, 1) space X, there is a free cellular action of G on the universal cover X̃;

we say that X̃ is a free G-CW-complex.
We will define the L2-Betti numbers of a general free G-CW-complex Y . The L2-Betti

numbers of G will then be defined as those of X̃, where X is a K(G, 1) space.

We will need certain finiteness properties.

Definition 2.3. Let Y be a free G-CW-complex. We say that Y has type

• Fn (n ≥ 0) if Y has a finite number of orbits of n-cells,

• F∞ if Y is of type Fn for all n ≥ 0.

We say that G is of type Fn or F∞, if the G-CW-complex X̃ (for X a K(G, 1) space) is of
type Fn or F∞ respectively.

Remark 2.4. (i) We have F∞ ⇒ · · · ⇒ Fn+1 ⇒ Fn ⇒ · · · ⇒ F0. All those implications
are strict.

(ii) Every group is of type F0.

(iii) A group is of type F1 if and only if it is finitely generated.

(iv) A group is of type F2 if and only if it is finitely presented.
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2.2 Definition of L2-Betti numbers

We now define the L2-Betti numbers of a free G-CW-complex Y of type F∞.
Let Ccell

∗ (Y ) be the cellular chain complex of Y over C: for each degree n ∈ N≥0,
Ccell

n (Y ) is the C-vector space with basis the set of n-cells of Y . The action G ↷ Y
induces G ↷ Ccell

∗ (Y ), which gives Ccell
∗ (Y ) the structure of a chain complex over CG. The

L2-cellular chain complex of Y is defined by

C
(2)
∗ (G ↷ Y ) := ℓ2G ⊗CG Ccell

∗ (Y ),

where ℓ2G is equipped with the action of CG by multiplication on the right. The L2-
boundary maps are defined by

∂(2)
n := idℓ2G ⊗∂cell

n : C(2)
n (G ↷ Y ) → C

(2)
n−1 (G ↷ Y ) .

This makes C
(2)
∗ (G ↷ Y ) a chain complex.

Definition 2.5. The L2-homology of a free G-CW-complex Y is defined by

H(2)
n (G ↷ Y ) := Ker ∂(2)

n /Im ∂
(2)
n+1.

Proposition 2.6. If G ↷ Y is of type F∞, then H
(2)
n (G ↷ Y ) is a Hilbert G-module.

Proof. Fix n ≥ 0. The n-th chain group C
(2)
n (G ↷ Y ) can be described as follows. Pick a

collection {σi}i∈I of n-cells of Y whose orbits are disjoint and cover the n-skeleton of Y .
The set I can be chosen finite since G ↷ Y is of type F∞.

We have
Ccell

n (Y ) =
⊕
i∈I

⊕
g∈G

C (g · σi) =
⊕
i∈I

CG [σi] ,

and therefore
C(2)

n (G ↷ Y ) =
⊕
i∈I

ℓ2G [σi] .

It is now clear that C
(2)
n (G ↷ Y ) is a Hilbert G-module (with an embedding into

(
ℓ2G

)|I|).
Moreover, the L2-boundary maps ∂

(2)
n are morphisms of Hilbert G-modules.

Hence, the result is a consequence of the general fact that, if φ : V → W is a morphism
of Hilbert G-modules, then Ker φ and W/Im φ are Hilbert G-modules.

Definition 2.7. Let Y be a free G-CW-complex of type F∞. For n ∈ N≥0, the n-th
L2-Betti number of G ↷ Y is

b(2)
n (G ↷ Y ) := dimNG H(2)

n (G ↷ Y ) .
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In order to define the L2-Betti numbers of a group, we must make sure that L2-Betti
numbers are invariant under homotopy equivalence, so that they do not depend on the
choice of a K(G, 1) space.

Proposition 2.8. Let Y1, Y2 be free G-CW-complexes. If f : Y1 → Y2 is a G-equivariant
homotopy equivalence, then for all n ∈ N≥0,

b(2)
n (G ↷ Y1) = b(2)

n (G ↷ Y2) .

Proof. The map f induces a CG-chain homotopy equivalence

f∗ : Ccell
∗ (Y1) ∼−→ Ccell

∗ (Y2) ,

which then induces a chain homotopy equivalence in the category of Hilbert G-modules

C
(2)
∗ (G ↷ Y1) ∼−→ C

(2)
2 (G ↷ Y2) .

Definition 2.9. Let G be a group of type F∞. For n ∈ N≥0, the n-th L2-Betti number of
G is

b(2)
n (G) := b(2)

n

(
G ↷ X̃

)
,

where X̃ is the universal cover of a K(G, 1) space.

It follows from Proposition 2.8 and the uniqueness of K(G, 1) spaces up to homotopy
that b

(2)
n (G) does not depend on the choice of a K(G, 1) space.

From now on, we will focus on L2-Betti numbers of groups.
Remark 2.10. (i) An alternative approach would have been to start with a projective

resolution of C by CG-modules, and then to apply ℓ2G ⊗CG −.

(ii) One could also have defined the L2-cochain complex of G ↷ Y by

C∗
(2) (G ↷ Y ) := HomCG

(
Ccell

∗ (Y ), ℓ2G
)

,

and take H∗
(2) (G ↷ Y ) to be the cohomology of this cochain complex. In fact, this

leads to isomorphisms of Hilbert G-modules

H∗
(2) (G ↷ Y ) ∼= H

(2)
∗ (G ↷ Y ) ,

so that homological and cohomological L2-Betti numbers are equal.
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2.3 Basic properties

We start by computing b
(2)
0 .

Proposition 2.11. Let G be a group of type F∞. Then

b
(2)
0 (G) = 1

|G|
,

with the convention 1/∞ = 0.

Proof. We construct a K(G, 1) space as in §2.1, and obtain isomorphisms

C
(2)
0

(
G ↷ X̃

)
∼= ℓ2G and C

(2)
1

(
G ↷ X̃

)
∼=

⊕
s∈S

ℓ2G[s],

where S is a generating set for G, and the boundary map is given by ∂
(2)
1 (s) = s−e. Hence,

H
(2)
0

(
G ↷ X̃

)
= ℓ2G/⟨x − gx | x ∈ ℓ2G, g ∈ G⟩C.

• If G is finite, then ℓ2G = CG and H
(2)
0

(
G ↷ X̃

)
= C (with G acting trivially), so

b
(2)
0 (G) = dimNG C = 1

|G|
.

• If G is infinite, we will show that H
(2)
0

(
G ↷ X̃

)
= 0, or equivalently that the dual of

H
(2)
0

(
G ↷ X̃

)
is trivial. This amounts to proving that, if f : ℓ2G → C is C-linear,

bounded, and zero on
〈
x − gx | x ∈ ℓ2G, g ∈ G

〉
C (i.e. f is left-G-invariant), then

f = 0. As G is infinite and countable, we can enumerate G = {gn}n≥1, and consider
x = ∑

n
1
ngn ∈ ℓ2G. We have

f(x) =
∑
n≥1

1
n

f (gn) =
∑
n≥1

1
n

f(e).

Therefore, f(e) = 0, so f(g) = 0 for all g ∈ G since f is G-invariant, and f = 0 by
linearity and continuity.

We now give basic properties that will be useful for computations of L2-Betti numbers.

Proposition 2.12. Let G and H be two groups of type F∞ and n ≥ 0.

(i) (Dimension) If G has a K(G, 1) space of dimension ≤ n − 1, then

b(2)
n (G) = 0.
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(ii) (Restriction) If H is a finite-index subgroup of G, then

b(2)
n (H) = [G : H] · b(2)

n (G)

(iii) (Künneth formula)

b(2)
n (G × H) =

n∑
j=0

b
(2)
j (G) · b

(2)
n−j(H).

(iv) (Additivity)

b
(2)
1 (G ∗ H) = b

(2)
1 (G) + b

(2)
1 (H) + 1 − b

(2)
0 (G) − b

(2)
0 (H)

and moreover, if n ≥ 2,

b(2)
n (G ∗ H) = b(2)

n (G) + b(2)
n (H).

(v) (Poincaré duality) If G has a K(G, 1) space which is an orientable closed connected
manifold of dimension d, then

b(2)
n (G) = b

(2)
d−n(G).

(vi) (Euler characteristic) If G has a K(G, 1) space with a finite number of cells, then

χ(G) =
∑
n≥0

(−1)nb(2)
n (G).

Proof. (i) If X is a K(G, 1) space of dimension ≤ n − 1, then C
(2)
n

(
G ↷ X̃

)
= 0 and

H
(2)
n

(
G ↷ X̃

)
= 0.

(ii) Let X be a K(G, 1) space, and let XH → X be the covering associated to the
subgroup H ≤ G. Hence, XH is a K(H, 1) and X̃ is the common universal cover of
X and XH . Therefore, C

(2)
∗

(
H ↷ X̃

)
is obtained from C

(2)
∗

(
G ↷ X̃

)
by applying

the restriction functor ResG
H . The result now follows from Proposition 1.13(vi).

(iii) If X is K(G, 1) space and Y is a K(H, 1) space, then X × Y is a K (G × H, 1) space.
The rest of the proof is similar to that of the usual Künneth formula, using 1.13(v).

(iv) If X is a K(G, 1) space and Y is a K(H, 1) space, then X ∨ Y is a K (G ∗ H, 1). We
then use a Mayer–Vietoris-type argument.

(v) This uses a Poincaré duality “twisted” by the action of G, and the fact that L2-Betti
numbers can also be computed in terms of cohomology (see Remark 2.10(ii)).
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(vi) The main ingredient is an “L2-rank-nullity theorem” : if φ : V → W is a morphism
of Hilbert G-modules, then

dimNG(V ) − dimNG(W ) = dimNG (Ker φ) − dimNG

(
W/Im φ

)
.

It follows that, for n ≥ 0,

b(2)
n (G) = dimNG

(
Ker ∂(2)

n

)
+ dimNG

(
Ker ∂

(2)
n+1

)
− dimNG

(
C

(2)
n+1

(
G ↷ X̃

))
.

Therefore, ∑
n≥0

(−1)nb(2)
n (G) =

∑
n≥0

(−1)n dimNG

(
C(2)

n

(
G ↷ X̃

))
.

But dimNG

(
C

(2)
n

(
G ↷ X̃

))
is the number of n-cells of X, so the above sum is equal

to χ(X) = χ(G).

Remark 2.13. Among the properties listed in Proposition 2.12, items (i), (iii), (iv), (v) et
(vi) are also true for usual Betti numbers (defined by bn(G) := dimC Hn (G)). So far, the
only property that is specific to the L2 world is the restriction formula (ii).

2.4 Some examples

We now give explicit computations of L2-Betti numbers in a few simple cases.
Example 2.14 (Finite groups). Let G be a finite group. Then

b(2)
n (G) =


1

|G| if n = 0
0 if n ≥ 1

.

Proof. Note that the trivial group {1} has index |G| in G; its L2-Betti numbers are

b(2)
n ({1}) =

{
1 if n = 0
0 if n ≥ 1

.

(Indeed, the trivial group has a K(G, 1) space of dimension 0, and the case n = 0 comes
from Proposition 2.11.) Now the result follows from the restriction formula (2.12(ii)).

Example 2.15 (Z).
b(2)

n (Z) = 0 for all n ∈ N≥0.

Proof. The circle S1 is a K (Z, 1) space. Since dim S1 = 1, we have b
(2)
n (Z) = 0 for n ≥ 2

(by 2.12.(i)). Moreover, b
(2)
0 (Z) = 0 since Z is infinite (2.11). We can then compute b

(2)
1 (Z)

in several different manners:
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• Explicit computation. There is a cellular structure on S1 with one 0-cell and one 1-cell.
Therefore, C

(2)
0

(
Z ↷ S1)

= ℓ2Z, and C
(2)
1

(
Z ↷ S1)

= ℓ2Z, and C
(2)
n

(
Z ↷ S1)

= 0
for n ≥ 2. Denoting by t a generator of Z, the boundary map ∂

(2)
1 is given by

∂
(2)
1 (x) = (t − 1)x.

Hence, we see that H
(2)
1

(
Z ↷ S1)

= Ker ∂
(2)
1 = 0.

• Euler characteristic. By Proposition 2.12.(vi), we have

−b
(2)
1 (Z) = χ (Z) = 0.

• Finite-index subgroups. For all d ≥ 1, the group Z contains an index-d subgroup
isomorphic to Z, so the restriction formula (2.12.(ii)) yields

b(2)
n (Z) = d · b(2)

n (Z) .

It follows that b
(2)
n (Z) = 0 for all n ≥ 0.

Example 2.16 (Free groups). Let Fr be the free group of rank r ≥ 1. Then

b(2)
n (Fr) =


0 if n = 0
r − 1 if n = 1
0 if n ≥ 2

.

Proof. We have b
(2)
0 (Fr) = 0 since Fr is infinite (2.11). Moreover, b

(2)
n (Fr) = 0 for n ≥ 2

because Fr has a K(G, 1) space of dimension 1 (2.12.(i)). Here are two different computa-
tions of b

(2)
1 (Fr) :

• By additivity of L2-Betti numbers (2.12.(iv)), we have

b
(2)
1 (Fr) = b

(2)
1 (Z) + b

(2)
1 (Fr−1) + 1 − b

(2)
0 (Z) − b

(2)
0 (Fr−1) = b

(2)
1 (Fr−1) + 1.

We conclude by induction using b
(2)
1 (F1) = b

(2)
1 (Z) = 0 (2.15).

• By considering the Euler characteristic (2.12.(iv)), we have

−b
(2)
1 (Fr) = χ (Fr) = 1 − r.

Remark 2.17. The wedge of two circles S1 ∨ S1 is a K (F2, 1) space; its universal cover is
the degree-4 regular tree T . Example 2.16 shows that b

(2)
1 (Fr) = 1. Figure 1 shows an

explicit 1-cycle in C
(2)
1 (F2 ↷ T ).
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Figure 1: An L2-1-cycle for F2 ↷ T .

Example 2.18 (Surface groups). Let Σg be the orientable closed connected genus-g surface,
for g ≥ 1. Then

b(2)
n (π1Σg) =


0 if n = 0
2(g − 1) if n = 1
0 if n ≥ 2

.

Proof. The group π1Σg is infinite, so b
(2)
0 (π1Σg) = 0 (2.11), and Σg is a K(G, 1) space of

dimension 2, so b
(2)
n (π1Σg) = 0 for n ≥ 3 (2.12.(i)). Moreover, Poincaré duality (2.12.(v))

implies that
b

(2)
2 (π1Σg) = b

(2)
0 (π1Σg) = 0.

Finally, −b
(2)
1 (π1Σg) = χ (Σg) = 2 − 2g (2.12.(iv)).
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