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Week 1 — Background on von Neumann dimension

Speaker: Alexis Marchand.
References: [, Chapter 2], [2], [4, Chapter 1], [3, §1.1].

1.1 Motivation

The goal of what follows is to develop a good equivariant homology theory for actions
G ~ X of groups on topological spaces. The usual singular chain complex C3"#(X; C) and
singular homology H,(X;C) inherit a G-action, so they have the structure of CG-modules.
However, the group G is typically infinite and we do not have a good notion of dimension
for modules over CG. This is why we will work in an L? setting.



We will introduce a homology theory H£2)(G ~ X), together with associated Betti

numbers bg)(G ~ X). They will be well-defined when X is a G-CW-complex under a
certain finiteness property.

In the first talk, we introduce the relevant notions around Hilbert modules and von
Neumann dimension that will allow us to define L?-Betti numbers.

1.2 Hilbert G-modules
We fix a countable group GG. We will work with C-coefficients throughout.

Definition 1.1. The group ring of G over C is the C-algebra CG (or C[G]), with underlying
C-vector space

CG = @ Cy,

geG

with multiplication defined on the basis vectors by g - h = gh.
Ezample 1.2. o C[Z] = C [t,t7!] is the ring of Laurent polynomials over C.
o Forne N>y, C[Z/n] =C[t]/ (t" —1).
The group ring CG can be equipped with a natural inner product (-, -) defined by
<Z aqg, Z bgg> = Z agby
geG geG geG

The completion of CG with respect to (-,-) is a complex Hilbert space, which we denote
by ¢2G; it can also be defined as the C-vector space of £?-summable functions G — C.
Note that £2G has the structure of a CG-module, with action given by

h- Z agg = Z aghg.

geG geG
Ezample 1.3. o If G is finite, then /2G = CG.

e If G = Z, by Fourier analysis, there is an isomorphism (2G = L? ([-7,7],C) given
by

Z apt™ — (m — \/127 Z aneim) .
T

neEZ nez

Since the group G is assumed to be countable, the Hilbert space £2G is separable.

Definition 1.4. A Hilbert G-module is a complex Hilbert space V with a C-linear isometric
(left) G-action such that there is an isometric G-embedding

Vs (ﬁG)"

2



for some n € N>.
A morphism between two Hilbert G-modules V' and W is a G-equivariant bounded
C-linear map V' — W.

Our homology groups will be Hilbert G-modules; our main task will be to define a
notion of dimension for such modules.

1.3 Background on von Neumann algebras

Let H be a complex Hilbert space. Then the space B(#) of bounded linear operators
‘H — H is a C-algebra, with multiplication given by composition.

Recall that, given u € B(H), there is a unique u* € B(H) — called the adjoint of f —
such that, for all z,y € H,

(u(x), y) = (z,u"(y)) -
(This follows from the Riesz Representation Theorem applied to the linear form (u(-),y)
for fixed y € H.) Hence, -* defines an involution on B(H); this turns the latter into a
x-algebra.
There are several topologies that one can define on B(H):
e The norm topology, given by

Il def
Up, —> U <= [Juy — ul|| — 0,

e The strong topology, given by

Up > u A vy e H, ||un(x) —u(z)|| — 0,

e The weak topology, given by

un % u L ey € H, (un(x),y) — (u(z),y).

Definition 1.5. A von Neumann algebra is a unital weakly closed x-subalgebra of B(H)
for some complex Hilbert space H.
Given a subset S C B(H), its commutant is defined by
S :={u e B(H)|Vs €S, us = su}.

The bicommutant of S is simply S” = (S')".
The following theorem is a fundamental structural result for von Neumann algebras:

Theorem 1.6 (von Neumann Bicommutant Theorem). Let H be a complex Hilbert space
and let A C B(H) be a unital x-subalgebra of B(H). Then the following are equivalent:

(i) A" = A.
(ii) A is strongly closed.
(iii) A is weakly closed.



1.4 The group von Neumann algebra and its trace

We come back to the setup of §1.2: G is a countable group and we are considering the
Hilbert space £2G. As above, we denote by B (EQG) the C-algebra of bounded linear
operators (2°G — 2G.

Observe that there are two embeddings

A\p:CG < B((G)

given by the respective actions of CG on /2G by left and right multiplication.
Proposition/Definition 1.7. The following subsets of B ((*G) are all equal:

) The weak closure of p(CQG),
(ii) The strong closure of p(CG),

) The bicommutant of p(CG),

) The set of u € B (£2G) that are left CG-equivariant, i.e. A (CG)'.
This set is called the (right) group von Neumann algebra of G, and denoted by NG.

Proof. The equalities (i) = (ii) = (iii) follow from the Bicommutant Theorem (1.6).

We first show that (ii) C (iv). It is clear that p(CG) C (iv), so it suffices to prove that
(iv) is strongly closed. Let (uy),~; be a sequence of left CG-equivariant bounded linear
operators on £?G, converging to u € B ((*G). For all a € CG and z € (*G, we have

a-u(x)=a- nh_{réo up(x) = lim (a-uy(z)) = Jim un(azx) = u(ax),

so u is also left CG-equivariant. This proves that (iv) is sequentially closed in the strong
topology. The same proof, after replacing sequences with nets, shows that (iv) is strongly
closed.

Conversely, we show that (iv) C (iii)'. We consider the operator J : 2G — ¢2G defined

by
J: Z agg — Z ag-19.

geG geG
Claim. (i) JoJ =id.

(ii) JoA(z)o J = p(Jz) for all x € CG. In particular, JA(CG)J = p (CG).
(iii) For all u € N(CG)’, we have J o u(e) = u*(e).

Proof of the claim. (i) This is clear.

'Thanks are due to Hiroto Nishikawa for explaining this part of the proof.



(ii) The equality follows from a simple computation.

(iii) A computation shows that, for all z,y € CG,

(Jz,y) = (e, xy) = (e,yz) = (Jy, x) . (*)

Note that (x) also holds for z € CG and y € ¢?G by density. Now take u € A\(CG)'.
Using (x), we have for all € CG,

(Joufe),x) = (e, Mx) o ule)) = (e;uo A(x)(e)) = (u"(e), A(x)(e)) = (u"(e), z) .

Hence, the linear forms (J o u(e),—) and (u*(e), —) agree on CG and therefore on
?2G by density; it follows that J o u(e) = u*(e). O

Using the above, we are now ready to show that A (CG)" C p(CG)"; this will prove
the inclusion (iv) C (iii). Proving that A (CG)" C p (CG)” amounts to showing that every
u € A(CG) and v € p(CG) commute. But by (ii) of the claim, we have

p(CGY = (JA(CG)J) = JX(CG) J.

Hence, we write v = Jw.J with w € A (CG)". Let z € ¢>G. Using repeatedly (iii) of the
claim, together with the facts that p (CG) C A(CG)' and that (A (CG)')" = A(CG)', we
obtain

u(Jwd)r = uJwJp(x)e = uJwp(x) e = up(x)w’e,
(JwJ)ux = JwJup(z)e = Jwp(x)*u*e = up(x)w'e,

proving that u(JwJ) = (JwJ)u as wanted. O

In order to define a notion of dimension for Hilbert G-modules, the basic idea is that,
in a finite-dimensional Hilbert space, the dimension of a subspace is equal to the trace of
the orthogonal projection onto that subspace.

Our next step is therefore to equip NG with a trace.

Definition 1.8. The trace on NG is the map trg : NG — C given by
trg : a— (e,a(e)),
where e € CG C £2G is the atomic function at the identity e € G.
Proposition 1.9. The following properties hold for all a,b € NG:
(i) (Trace property) trg(aob) =trg(boa).

(ii) (Faithfulness) trg (a* oa) =0 if and only if a = 0.



(iii) (Positivity) Suppose that a > 0, in the sense that Yo € (G, (z,a(z)) > 0. Then
trg(a) > 0.

Proof. (i) Note that, for a = 3> asg € CG, we have trg(a) = a.. Moreover, for a,b €
CG, the composition a o b acts on £2G as the product ba (because CG acts on £2G
by right multiplication!), so trg(a o b) is equal to the coefficient of e in ba:

trg(aob) = Z bgah.
g,heG
gh=e

This is symmetric in a and b, and hence equal to trg(b o a). This proves the trace
property for a,b € CG, which extends by continuity to NG.

(ii) Let a € NG with trg (a* o a) = 0. Then

0= (e,a" oale)) = (a(e),ale)),

so a(e) = 0. By G-equivariance, we have a(g) = g-a(e) =0 for all g € G. It follows
by linearity that a is 0 on CG, and by continuity that a is 0 on NG.

(iii) This is clear. O

Given a matrix A € M« (NG), we define
trg(A) = ZtrG (Ajj).
j=1

Usual linear algebra shows that this trace also satisfies Proposition 1.9.
Now any bounded left G-equivariant map (¢2G)" — (¢2G)" is represented by a matrix
in M,,«, (NG) and hence has a trace.

1.5 Von Neumann dimension

Let G be a countable group.

Proposition/Definition 1.10. Let V' be a Hilbert G-module. The von Neumann-G-
dimension of V' is defined by
dimng V = tra(p),

where ¢ 1V — (EQG)n is a choice of isometric G-embedding for some n € N> and
p: ((2G)" — ((2G)" is the orthogonal projection onto the closed subspace i(V').
This is independent of the choice of 1, and dimng V' € R>p.



Proof. Let j : V — (€2G)m be another isometric G-embedding, with m € N>, and let
q: (?G)™ — (£2G)™ be the orthogonal projection onto j(V').
Define a map u : ((2G)" — ((*G)™ by wjpm; =joi ' and uy(

tion, j = u o ¢; it follows that ¢ = p o u*. Hence,

ma)t = 0. By construc-
trg(q) =trg (uoq) =trg (uopou®™) =trg(pou*ou) =trg (pop) = tra(p).

To see that dimng V' € R>(, note that p is a positive operator, so the diagonal entries
of its matrix are also positive operators; the result follows from positivity of the trace. [

We give two examples of computations of von Neummann dimensions.

Example 1.11 (Finite groups). If G is a finite group, then CG = (?G = NG. A Hilbert
G-module V is finite-dimension over C and satisfies

1

dimc V.
G|

dimngV =

Ezample 1.12 (Z). If G = Z, then ?°G = L? (-7, 7],C) (see Example 1.3), and
NG = L™ ([-m,n],C),

with the action of NG on ¢?G given by pointwise multiplication.
Under this isomorphism, trg : L™ ([—m, 7], C) is given by

1 ™
terf|—>—/ fdA.
21 J_r
Now let A C [—m, 7] be a measurable set, and consider
Vi={f xa|feL?(-m7],0)} C L*([-7,7],C) = £G.

This is a Hilbert-G-module (embedding into ¢2G). The orthogonal projection onto A is
represented by the matrix (x4) € M1x1(NG). Therefore,

dimng V = trg (xa) = %/\(A)-
In particular, every number in [0, 1] occurs as a von Neumann dimension!
We finish with some basic properties of the von Neumann dimension.
Proposition 1.13. The von Neumann dimension has the following properties.
(i) (Normalisation) dimng (2G = 1.

(ii) (Faithfulness) For every Hilbert G-module V', we have dimngV = 0 if and only if
V=0.



(iii) (Weak isomorphism invariance) If f : V. — W is a morphism of Hilbert G-modules
with Ker f =0 and Im f = W, then dimyg V = dimyg W.

(iv) (Additivity) Assume that the sequence of Hilbert G-modules
(I AN 7N /AN
is weakly exact, in the sense that i is injective, Imi = Kerm, and Im7 = V3. Then

dimng V2 = dimng Vi + dimng Vs.

(v) (Multiplicativity) Let H be another countable group. Let V' be a Hilbert G-module
and W a Hilbert H-module. Then the completed tensor product V@cW is a Hilbert
G x H-module, and

dimN(GxH) (V@@W) = dimNG V. dimNH Ww.

(vi) (Restriction) Let V' be a Hilbert G-module and let H < G be a finite-index subgroup.
Then V is naturally a Hilbert H-module, and

dimxg ResG V =[G : H] - dimng V.

Sketch of proof. (i) This is clear (taking (G — (€2G)1 and p = id).
(ii) This follows from faithfulness of the von Neumann trace (1.9).

(iii) This is a consequence of polar decomposition: the map f can be written as f = uop,
where u is a partial isometry and p is a positive operator with Keru = Kerp. In
this case, f is injective, so Keru = Kerp = 0; moreover, u has closed image and
so Imu = Imu = Im f = W. Hence, u is an isometry, which is G-equivariant by
uniqueness of the polar decomposition.

(iv) Note first that dimyg is additive with respect to direct sums, and define a weak
isomorphism V' — Imi® V3 by = — p(z)®7(x), where p : V' — Im1 is the orthogonal
projection.

(v) The key fact is that there is an isomorphism ¢2 (G x H) = (?GRcl*H of Hilbert
G x H-modules. O

Week 2 — L?-homology and L2-Betti numbers

Speaker: Alexis Marchand.
References: [1, (parts of) Chapters 3-4], [1, Chapter 2], [3, §1.2].



2.1 Eilenberg—MacLane space and finiteness properties

Let G be a discrete group. We will study the (co)homology of G via its Eilenberg—MacLane
space.

Definition 2.1. An Eilenberg—MacLane space for G — or K (G, 1) space — is a connected
aspherical CW-complex X with m X = G.

Up to homotopy equivalence, a K (G, 1) space is unique.

In order to construct a K(G,1) space, we start with a (possibly infinite) presentation
of G, we build its presentation complex (with one 0-cell, one 1-cell for each generator, one
2-cell for each relation), and we successively add higher dimensional cells to kill all the
homotopy groups. The resulting CW-complex is a K (G, 1).

Remark 2.2. Let G be a countable group and let X be a K (G, 1) space. The group homology
of G can be defined as
H,(G) = H.(X),

where H*(X) denotes the (singular/cellular) homology of X.

Given a K (G, 1) space X, there is a free cellular action of G on the universal cover X:
we say that X is a free G-CW-comple.

We will define the L2-Betti numbers of a general free G-CW-complex Y. The L?-Betti
numbers of G will then be defined as those of X, where X is a K(G,1) space.

We will need certain finiteness properties.

Definition 2.3. Let Y be a free G-CW-complex. We say that Y has type
o F,, (n>0)if Y has a finite number of orbits of n-cells,
o Fif Y is of type F,, for all n > 0.

We say that G is of type F,, or Fo, if the G-CW-complex X (for X a K(G,1) space) is of
type F,, or F, respectively.

Remark 2.4. (i) We have Foo = -+ = F, 11 = F,, = --- = Fy. All those implications
are strict.

(ii) Every group is of type Fy.
(iii) A group is of type Fy if and only if it is finitely generated.

(iv) A group is of type Fy if and only if it is finitely presented.



2.2 Definition of L2-Betti numbers

We now define the L?-Betti numbers of a free G-CW-complex Y of type Fo

Let C¢(Y) be the cellular chain complex of Y over C: for each degree n € N,
Cl(Y) is the C-vector space with basis the set of n-cells of Y. The action G ~ Y
induces G ~ C¢(Y'), which gives C¢(Y) the structure of a chain complex over CG. The
L?-cellular chain complex of Y is defined by

P (G AY) =G @ec CN(Y),

where (2G is equipped with the action of CG by multiplication on the right. The L?-
boundary maps are defined by

0@ = idpe 0N CD (G AY) = C? (G AY).

n

This makes (G ~Y) a chain complex.

Definition 2.5. The L?-homology of a free G-CW-complex Y is defined by

H? (G~ Y) = Kerd? /Tm 8%),.
Proposition 2.6. If G ~ Y is of type Fo, then Hr(Lz) (G ~Y) is a Hilbert G-module.

Proof. Fix n > 0. The n-th chain group c? (G ~Y) can be described as follows. Pick a
collection {0;},.; of n-cells of Y whose orbits are disjoint and cover the n-skeleton of Y.
The set I can be chosen finite since G ~ Y is of type F

We have
YY) =P PClg-0) =P CGoi],

i€l geG i€l
and therefore
cH(GEnY)=Prc

el

It is now clear that C\ (G ~Y) is a Hilbert G-module (with an embedding into (£*G) \II)'
(2)

Moreover, the L?-boundary maps 0, are morphisms of Hilbert G-modules.
Hence, the result is a consequence of the general fact that, if ¢ : V' — W is a morphism
of Hilbert G-modules, then Ker ¢ and W/Im ¢ are Hilbert G-modules. O

Definition 2.7. Let Y be a free G-CW-complex of type Fo,. For n € N5, the n-th
L?-Betti number of G N Y is

b2 (G AY) =dimyg HP (G AY).
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In order to define the L?-Betti numbers of a group, we must make sure that L?-Betti
numbers are invariant under homotopy equivalence, so that they do not depend on the
choice of a K(G, 1) space.

Proposition 2.8. Let Y1,Ys be free G-CW-complexes. If f : Y1 — Ys is a G-equivariant
homotopy equivalence, then for all n € N>,

b2 (G~ YY) =02 (G Ys).
Proof. The map f induces a CG-chain homotopy equivalence
for CE (V) = G (1Y)
which then induces a chain homotopy equivalence in the category of Hilbert G-modules
PG AT S CP (G AY). O
Definition 2.9. Let G be a group of type Foo. For n € N>, the n-th L2-Betti number of

G is
b2 (G) =P (G ~ X)),

where X is the universal cover of a K(G, 1) space.

It follows from Proposition 2.8 and the uniqueness of K (G, 1) spaces up to homotopy

that bg)(G) does not depend on the choice of a K (G, 1) space.
From now on, we will focus on L?-Betti numbers of groups.

Remark 2.10. (i) An alternative approach would have been to start with a projective
resolution of C by CG-modules, and then to apply /2G ®cq —.

(ii) One could also have defined the L2-cochain complex of G ~ Y by
Clyy (G A Y) = Homeg (C2(Y), 2G)

and take H E"2) (G ~Y) to be the cohomology of this cochain complex. In fact, this
leads to isomorphisms of Hilbert G-modules

Hy (GAY)2HD (GAY),

so that homological and cohomological L?-Betti numbers are equal.

11



2.3 Basic properties
We start by computing béQ).

Proposition 2.11. Let G be a group of type Fo. Then

with the convention 1/00 = 0.
Proof. We construct a K (G, 1) space as in §2.1, and obtain isomorphisms

(G X)=r6  and O (G X) =2 @EG),
ses

where S is a generating set for G, and the boundary map is given by 8%2) (s) = s—e. Hence,

HSQ) (G mX') =0*G/{x — gz |z € P2G, g € G)¢.
o If G is finite, then /2G = CG and HSZ) (G ~ X) = C (with G acting trivially), so

1
B2(G) = dimpg C = Telk

e If GG is infinite, we will show that HSZ) (G ~ X ) = 0, or equivalently that the dual of
Hé2) (G ~ X) is trivial. This amounts to proving that, if f : 2G — C is C-linear,
bounded, and zero on (z — gz |z € (*G, g € G) (i.e. [ is left-G-invariant), then

f =0. As G is infinite and countable, we can enumerate G = {gy},~, and consider
rT=>, %gn € (2G. We have

Therefore, f(e) =0, so f(g) = 0 for all g € G since f is G-invariant, and f = 0 by
linearity and continuity. O

We now give basic properties that will be useful for computations of L?-Betti numbers.
Proposition 2.12. Let G and H be two groups of type Foo and n > 0.
(i) (Dimension) If G has a K(G,1) space of dimension < n — 1, then

b2(@) = 0.
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(ii) (Restriction) If H is a finite-index subgroup of G, then

b (H) =[G : H]-bP(G)

n

(iii) (Kinneth formula)
b (G x H)y =Y 02(a) -2 (H).
7=0

(iv) (Additivity)
b7 (G H) = b2(@) + b2 (H) +1-b2(G) — b (H)
and moreover, if n > 2,

b2 (G« H) = b2(G) + b (H).

(v) (Poincaré duality) If G has a K(G,1) space which is an orientable closed connected
manifold of dimension d, then

b2 (@) = b,(G).

(vi) (Euler characteristic) If G has a K(G,1) space with a finite number of cells, then

X(G) = > (=1)"bD(Q).
n>0
Proof. (i) If X is a K(G, 1) space of dimension < n — 1, then c® (G ~ X’) =0 and
1P (6~ %) =0

(ii) Let X be a K(G,1) space, and let Xy — X be the covering associated to the
subgroup H < G. Hence, Xy is a K(H,1) and X is the common universal cover of

X and Xpg. Therefore, C’ig) (H ~ X ) is obtained from CiZ) (G ~ X ) by applying

the restriction functor Res%. The result now follows from Proposition 1.13(vi).

(iii) If X is K(G, 1) space and Y is a K(H, 1) space, then X xY isa K (G x H, 1) space.
The rest of the proof is similar to that of the usual Kiinneth formula, using 1.13(v).

(iv) If X isa K(G, 1) space and Y is a K(H, 1) space, then X VY isa K (G x H,1). We
then use a Mayer—Vietoris-type argument.

(v) This uses a Poincaré duality “twisted” by the action of G, and the fact that L?-Betti
numbers can also be computed in terms of cohomology (see Remark 2.10(ii)).
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(vi) The main ingredient is an “L2-rank-nullity theorem” : if ¢ : V' — W is a morphism
of Hilbert G-modules, then

dimyg(V) — dimyg(W) = dimyg (Ker ¢) — dimyg (W/Im go) )

It follows that, for n > 0,

b (G) = dimng (Ker o) + dimyg (Ker 9, ) — dimye (CF, (G ~ X)) .

Therefore,

Z(—l)"bg)(G) = Z(—l)n dimyg (07(12) (G ~ X)) .

n>0 n>0

But dimpy¢g (C’q(f) (G N X)) is the number of n-cells of X, so the above sum is equal
to ¥(X) = x(@). =

Remark 2.13. Among the properties listed in Proposition 2.12, items (i), (iii), (iv), (v) et
(vi) are also true for usual Betti numbers (defined by b, (G) = dim¢ H, (G)). So far, the
only property that is specific to the L? world is the restriction formula (ii).

2.4 Some examples

We now give explicit computations of L2-Betti numbers in a few simple cases.

Ezample 2.14 (Finite groups). Let G be a finite group. Then

L ifn=0
b%Q)(G):{()' ifn>1"

Proof. Note that the trivial group {1} has index |G| in Gj its L2-Betti numbers are

1 ifn=0
0 ifn>1"

b ({1}) = {

(Indeed, the trivial group has a K(G,1) space of dimension 0, and the case n = 0 comes
from Proposition 2.11.) Now the result follows from the restriction formula (2.12(ii)). O

Ezample 2.15 (Z).
b (Z) = 0 for all n € Nxg.

n

Proof. The circle St is a K (Z, 1) space. Since dim S* = 1, we have b (Z) =0forn>2
(by 2.12.(i)). Moreover, b(()2) (Z) = 0 since Z is infinite (2.11). We can then compute b§2) (z)
in several different manners:

14



e Ezplicit computation. There is a cellular structure on S* with one 0-cell and one 1-cell.
Therefore, Céz) (Z ~ S*) = (?Z, and C§2) (Z ~ S*) = (?Z, and o (Z~SH) =0

for n > 2. Denoting by ¢ a generator of Z, the boundary map 69)

is given by
0 (z) = (t— 1)z
Hence, we see that H\ (Z ~ S*) = Ker o =o.
o Euler characteristic. By Proposition 2.12.(vi), we have

0P (z) = x(2) = 0.

o Finite-index subgroups. For all d > 1, the group Z contains an index-d subgroup
isomorphic to Z, so the restriction formula (2.12.(ii)) yields

It follows that b2 (Z) = 0 for all n > 0. 0

Ezample 2.16 (Free groups). Let F, be the free group of rank r > 1. Then

0 ifn=20
VD (F)={r—1 ifn=1.
0 ifn>2

Proof. We have b((JQ) (F,) = 0 since F, is infinite (2.11). Moreover, b (Fy) =0forn > 2
because F, has a K(G, 1) space of dimension 1 (2.12.(i)). Here are two different computa-
tions of ng) (Fy) :

« By additivity of L2-Betti numbers (2.12.(iv)), we have
b (Fr) = 07 (2) + b7 (Fro) + 1= 067 (@) =0 (Froa) = b7 (Foa) + 1.
We conclude by induction using bﬁ” (Fy) = b§2) (Z) =0 (2.15).
o By considering the Euler characteristic (2.12.(iv)), we have

b (F) =x(F)=1-r O

Remark 2.17. The wedge of two circles S Vv St is a K (Fy,1) space; its universal cover is
the degree-4 regular tree 1. Example 2.16 shows that b§2) (F,) = 1. Figure 1 shows an

explicit 1-cycle in 052) (Fy ~T).
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o S
1—1—14 ! 1/2 1 Ve 12_‘1—41
| —&— 1/4 0 —&— |

Figure 1: An L2-1-cycle for Fb, ~ T.

Example 2.18 (Surface groups). Let £, be the orientable closed connected genus-g surface,
for g > 1. Then

0 ifn=0
b2 (mBy) =<{2(g—1) ifn=1.
0 ifn>2

Proof. The group m %, is infinite, so b(()z) (m1Xg) =0 (2.11), and ¥, is a K(G, 1) space of
dimension 2, so b (m1Xg) =0 for n > 3 (2.12.(i)). Moreover, Poincaré duality (2.12.(v))

implies that
bg) (m3y) = bém (m%,) = 0.

Finally, —ng) (mXg) = x (Bg) =2 —2¢ (2.12.(iv)). =
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